Merge pull request #1582 from xoviat/hrtim

Add the high resolution timer
This commit is contained in:
Dario Nieuwenhuis 2023-07-28 22:44:03 +00:00 committed by GitHub
commit bdc4aa4a3b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 781 additions and 4 deletions

View File

@ -25,6 +25,7 @@
// "examples/stm32f1/Cargo.toml",
// "examples/stm32f2/Cargo.toml",
// "examples/stm32f3/Cargo.toml",
// "examples/stm32f334/Cargo.toml",
// "examples/stm32f4/Cargo.toml",
// "examples/stm32f7/Cargo.toml",
// "examples/stm32g0/Cargo.toml",

1
ci.sh
View File

@ -117,6 +117,7 @@ cargo batch \
--- build --release --manifest-path examples/stm32f1/Cargo.toml --target thumbv7m-none-eabi --out-dir out/examples/stm32f1 \
--- build --release --manifest-path examples/stm32f2/Cargo.toml --target thumbv7m-none-eabi --out-dir out/examples/stm32f2 \
--- build --release --manifest-path examples/stm32f3/Cargo.toml --target thumbv7em-none-eabihf --out-dir out/examples/stm32f3 \
--- build --release --manifest-path examples/stm32f334/Cargo.toml --target thumbv7em-none-eabihf --out-dir out/examples/stm32f334 \
--- build --release --manifest-path examples/stm32f4/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32f4 \
--- build --release --manifest-path examples/stm32f7/Cargo.toml --target thumbv7em-none-eabihf --out-dir out/examples/stm32f7 \
--- build --release --manifest-path examples/stm32c0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32c0 \

View File

@ -587,6 +587,16 @@ fn main() {
(("timer", "BKIN2"), quote!(crate::timer::BreakInput2Pin)),
(("timer", "BKIN2_COMP1"), quote!(crate::timer::BreakInput2Comparator1Pin)),
(("timer", "BKIN2_COMP2"), quote!(crate::timer::BreakInput2Comparator2Pin)),
(("hrtim", "CHA1"), quote!(crate::hrtim::ChannelAPin)),
(("hrtim", "CHA2"), quote!(crate::hrtim::ChannelAComplementaryPin)),
(("hrtim", "CHB1"), quote!(crate::hrtim::ChannelBPin)),
(("hrtim", "CHB2"), quote!(crate::hrtim::ChannelBComplementaryPin)),
(("hrtim", "CHC1"), quote!(crate::hrtim::ChannelCPin)),
(("hrtim", "CHC2"), quote!(crate::hrtim::ChannelCComplementaryPin)),
(("hrtim", "CHD1"), quote!(crate::hrtim::ChannelDPin)),
(("hrtim", "CHD2"), quote!(crate::hrtim::ChannelDComplementaryPin)),
(("hrtim", "CHE1"), quote!(crate::hrtim::ChannelEPin)),
(("hrtim", "CHE2"), quote!(crate::hrtim::ChannelEComplementaryPin)),
(("sdmmc", "CK"), quote!(crate::sdmmc::CkPin)),
(("sdmmc", "CMD"), quote!(crate::sdmmc::CmdPin)),
(("sdmmc", "D0"), quote!(crate::sdmmc::D0Pin)),

View File

@ -0,0 +1,409 @@
mod traits;
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use traits::Instance;
#[allow(unused_imports)]
use crate::gpio::sealed::{AFType, Pin};
use crate::gpio::AnyPin;
use crate::time::Hertz;
use crate::Peripheral;
pub enum Source {
Master,
ChA,
ChB,
ChC,
ChD,
ChE,
}
pub struct BurstController<T: Instance> {
phantom: PhantomData<T>,
}
pub struct Master<T: Instance> {
phantom: PhantomData<T>,
}
pub struct ChA<T: Instance> {
phantom: PhantomData<T>,
}
pub struct ChB<T: Instance> {
phantom: PhantomData<T>,
}
pub struct ChC<T: Instance> {
phantom: PhantomData<T>,
}
pub struct ChD<T: Instance> {
phantom: PhantomData<T>,
}
pub struct ChE<T: Instance> {
phantom: PhantomData<T>,
}
mod sealed {
use super::Instance;
pub trait AdvancedChannel<T: Instance> {
fn raw() -> usize;
}
}
pub trait AdvancedChannel<T: Instance>: sealed::AdvancedChannel<T> {}
pub struct PwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
pub struct ComplementaryPwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
macro_rules! advanced_channel_impl {
($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident, $complementary_pin_trait:ident) => {
impl<'d, Perip: Instance> PwmPin<'d, Perip, $channel<Perip>> {
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
pin.set_speed(crate::gpio::Speed::VeryHigh);
});
PwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
impl<'d, Perip: Instance> ComplementaryPwmPin<'d, Perip, $channel<Perip>> {
pub fn $new_chx(pin: impl Peripheral<P = impl $complementary_pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
pin.set_speed(crate::gpio::Speed::VeryHigh);
});
ComplementaryPwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
impl<T: Instance> sealed::AdvancedChannel<T> for $channel<T> {
fn raw() -> usize {
$ch_num
}
}
impl<T: Instance> AdvancedChannel<T> for $channel<T> {}
};
}
advanced_channel_impl!(new_cha, ChA, 0, ChannelAPin, ChannelAComplementaryPin);
advanced_channel_impl!(new_chb, ChB, 1, ChannelBPin, ChannelBComplementaryPin);
advanced_channel_impl!(new_chc, ChC, 2, ChannelCPin, ChannelCComplementaryPin);
advanced_channel_impl!(new_chd, ChD, 3, ChannelDPin, ChannelDComplementaryPin);
advanced_channel_impl!(new_che, ChE, 4, ChannelEPin, ChannelEComplementaryPin);
/// Struct used to divide a high resolution timer into multiple channels
pub struct AdvancedPwm<'d, T: Instance> {
_inner: PeripheralRef<'d, T>,
pub master: Master<T>,
pub burst_controller: BurstController<T>,
pub ch_a: ChA<T>,
pub ch_b: ChB<T>,
pub ch_c: ChC<T>,
pub ch_d: ChD<T>,
pub ch_e: ChE<T>,
}
impl<'d, T: Instance> AdvancedPwm<'d, T> {
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_cha: Option<PwmPin<'d, T, ChA<T>>>,
_chan: Option<ComplementaryPwmPin<'d, T, ChA<T>>>,
_chb: Option<PwmPin<'d, T, ChB<T>>>,
_chbn: Option<ComplementaryPwmPin<'d, T, ChB<T>>>,
_chc: Option<PwmPin<'d, T, ChC<T>>>,
_chcn: Option<ComplementaryPwmPin<'d, T, ChC<T>>>,
_chd: Option<PwmPin<'d, T, ChD<T>>>,
_chdn: Option<ComplementaryPwmPin<'d, T, ChD<T>>>,
_che: Option<PwmPin<'d, T, ChE<T>>>,
_chen: Option<ComplementaryPwmPin<'d, T, ChE<T>>>,
) -> Self {
Self::new_inner(tim)
}
fn new_inner(tim: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(tim);
T::enable();
<T as crate::rcc::sealed::RccPeripheral>::reset();
// // Enable and and stabilize the DLL
// T::regs().dllcr().modify(|w| {
// // w.set_calen(true);
// // w.set_calrte(11);
// w.set_cal(true);
// });
//
// debug!("wait for dll calibration");
// while !T::regs().isr().read().dllrdy() {}
//
// debug!("dll calibration complete");
Self {
_inner: tim,
master: Master { phantom: PhantomData },
burst_controller: BurstController { phantom: PhantomData },
ch_a: ChA { phantom: PhantomData },
ch_b: ChB { phantom: PhantomData },
ch_c: ChC { phantom: PhantomData },
ch_d: ChD { phantom: PhantomData },
ch_e: ChE { phantom: PhantomData },
}
}
}
impl<T: Instance> BurstController<T> {
pub fn set_source(&mut self, _source: Source) {
todo!("burst mode control registers not implemented")
}
}
/// Represents a fixed-frequency bridge converter
///
/// Our implementation of the bridge converter uses a single channel and three compare registers,
/// allowing implementation of a synchronous buck or boost converter in continuous or discontinuous
/// conduction mode.
///
/// It is important to remember that in synchronous topologies, energy can flow in reverse during
/// light loading conditions, and that the low-side switch must be active for a short time to drive
/// a bootstrapped high-side switch.
pub struct BridgeConverter<T: Instance, C: AdvancedChannel<T>> {
timer: PhantomData<T>,
channel: PhantomData<C>,
dead_time: u16,
primary_duty: u16,
min_secondary_duty: u16,
max_secondary_duty: u16,
}
impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
pub fn new(_channel: C, frequency: Hertz) -> Self {
use crate::pac::hrtim::vals::{Activeeffect, Inactiveeffect};
T::set_channel_frequency(C::raw(), frequency);
// Always enable preload
T::regs().tim(C::raw()).cr().modify(|w| {
w.set_preen(true);
w.set_repu(true);
w.set_cont(true);
});
// Enable timer outputs
T::regs().oenr().modify(|w| {
w.set_t1oen(C::raw(), true);
w.set_t2oen(C::raw(), true);
});
// The dead-time generation unit cannot be used because it forces the other output
// to be completely complementary to the first output, which restricts certain waveforms
// Therefore, software-implemented dead time must be used when setting the duty cycles
// Set output 1 to active on a period event
T::regs()
.tim(C::raw())
.setr(0)
.modify(|w| w.set_per(Activeeffect::SETACTIVE));
// Set output 1 to inactive on a compare 1 event
T::regs()
.tim(C::raw())
.rstr(0)
.modify(|w| w.set_cmp(0, Inactiveeffect::SETINACTIVE));
// Set output 2 to active on a compare 2 event
T::regs()
.tim(C::raw())
.setr(1)
.modify(|w| w.set_cmp(1, Activeeffect::SETACTIVE));
// Set output 2 to inactive on a compare 3 event
T::regs()
.tim(C::raw())
.rstr(1)
.modify(|w| w.set_cmp(2, Inactiveeffect::SETINACTIVE));
Self {
timer: PhantomData,
channel: PhantomData,
dead_time: 0,
primary_duty: 0,
min_secondary_duty: 0,
max_secondary_duty: 0,
}
}
pub fn start(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), true));
}
pub fn stop(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), false));
}
pub fn enable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Enable Burst Mode
w.set_idlem(0, true);
w.set_idlem(1, true);
// Set output to active during the burst
w.set_idles(0, true);
w.set_idles(1, true);
})
}
pub fn disable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Disable Burst Mode
w.set_idlem(0, false);
w.set_idlem(1, false);
})
}
fn update_primary_duty_or_dead_time(&mut self) {
self.min_secondary_duty = self.primary_duty + self.dead_time;
T::regs().tim(C::raw()).cmp(0).modify(|w| w.set_cmp(self.primary_duty));
T::regs()
.tim(C::raw())
.cmp(1)
.modify(|w| w.set_cmp(self.min_secondary_duty));
}
/// Set the dead time as a proportion of the maximum compare value
pub fn set_dead_time(&mut self, dead_time: u16) {
self.dead_time = dead_time;
self.max_secondary_duty = self.get_max_compare_value() - dead_time;
self.update_primary_duty_or_dead_time();
}
/// Get the maximum compare value of a duty cycle
pub fn get_max_compare_value(&mut self) -> u16 {
T::regs().tim(C::raw()).per().read().per()
}
/// The primary duty is the period in which the primary switch is active
///
/// In the case of a buck converter, this is the high-side switch
/// In the case of a boost converter, this is the low-side switch
pub fn set_primary_duty(&mut self, primary_duty: u16) {
self.primary_duty = primary_duty;
self.update_primary_duty_or_dead_time();
}
/// The secondary duty is the period in any switch is active
///
/// If less than or equal to the primary duty, the secondary switch will be active for one tick
/// If a fully complementary output is desired, the secondary duty can be set to the max compare
pub fn set_secondary_duty(&mut self, secondary_duty: u16) {
let secondary_duty = if secondary_duty > self.max_secondary_duty {
self.max_secondary_duty
} else if secondary_duty <= self.min_secondary_duty {
self.min_secondary_duty + 1
} else {
secondary_duty
};
T::regs().tim(C::raw()).cmp(2).modify(|w| w.set_cmp(secondary_duty));
}
}
/// Represents a variable-frequency resonant converter
///
/// This implementation of a resonsant converter is appropriate for a half or full bridge,
/// but does not include secondary rectification, which is appropriate for applications
/// with a low-voltage on the secondary side.
pub struct ResonantConverter<T: Instance, C: AdvancedChannel<T>> {
timer: PhantomData<T>,
channel: PhantomData<C>,
min_period: u16,
max_period: u16,
}
impl<T: Instance, C: AdvancedChannel<T>> ResonantConverter<T, C> {
pub fn new(_channel: C, min_frequency: Hertz, max_frequency: Hertz) -> Self {
T::set_channel_frequency(C::raw(), min_frequency);
// Always enable preload
T::regs().tim(C::raw()).cr().modify(|w| {
w.set_preen(true);
w.set_repu(true);
w.set_cont(true);
w.set_half(true);
});
// Enable timer outputs
T::regs().oenr().modify(|w| {
w.set_t1oen(C::raw(), true);
w.set_t2oen(C::raw(), true);
});
// Dead-time generator can be used in this case because the primary fets
// of a resonant converter are always complementary
T::regs().tim(C::raw()).outr().modify(|w| w.set_dten(true));
let max_period = T::regs().tim(C::raw()).per().read().per();
let min_period = max_period * (min_frequency.0 / max_frequency.0) as u16;
Self {
timer: PhantomData,
channel: PhantomData,
min_period: min_period,
max_period: max_period,
}
}
/// Set the dead time as a proportion of the maximum compare value
pub fn set_dead_time(&mut self, value: u16) {
T::set_channel_dead_time(C::raw(), value);
}
pub fn set_period(&mut self, period: u16) {
assert!(period < self.max_period);
assert!(period > self.min_period);
T::regs().tim(C::raw()).per().modify(|w| w.set_per(period));
}
/// Get the minimum compare value of a duty cycle
pub fn get_min_period(&mut self) -> u16 {
self.min_period
}
/// Get the maximum compare value of a duty cycle
pub fn get_max_period(&mut self) -> u16 {
self.max_period
}
}
pin_trait!(ChannelAPin, Instance);
pin_trait!(ChannelAComplementaryPin, Instance);
pin_trait!(ChannelBPin, Instance);
pin_trait!(ChannelBComplementaryPin, Instance);
pin_trait!(ChannelCPin, Instance);
pin_trait!(ChannelCComplementaryPin, Instance);
pin_trait!(ChannelDPin, Instance);
pin_trait!(ChannelDComplementaryPin, Instance);
pin_trait!(ChannelEPin, Instance);
pin_trait!(ChannelEComplementaryPin, Instance);

View File

@ -0,0 +1,193 @@
use crate::rcc::sealed::RccPeripheral;
use crate::time::Hertz;
#[derive(Clone, Copy)]
pub(crate) enum Prescaler {
Div1,
Div2,
Div4,
Div8,
Div16,
Div32,
Div64,
Div128,
}
impl From<Prescaler> for u32 {
fn from(val: Prescaler) -> Self {
match val {
Prescaler::Div1 => 1,
Prescaler::Div2 => 2,
Prescaler::Div4 => 4,
Prescaler::Div8 => 8,
Prescaler::Div16 => 16,
Prescaler::Div32 => 32,
Prescaler::Div64 => 64,
Prescaler::Div128 => 128,
}
}
}
impl From<Prescaler> for u8 {
fn from(val: Prescaler) -> Self {
match val {
Prescaler::Div1 => 0b000,
Prescaler::Div2 => 0b001,
Prescaler::Div4 => 0b010,
Prescaler::Div8 => 0b011,
Prescaler::Div16 => 0b100,
Prescaler::Div32 => 0b101,
Prescaler::Div64 => 0b110,
Prescaler::Div128 => 0b111,
}
}
}
impl From<u8> for Prescaler {
fn from(val: u8) -> Self {
match val {
0b000 => Prescaler::Div1,
0b001 => Prescaler::Div2,
0b010 => Prescaler::Div4,
0b011 => Prescaler::Div8,
0b100 => Prescaler::Div16,
0b101 => Prescaler::Div32,
0b110 => Prescaler::Div64,
0b111 => Prescaler::Div128,
_ => unreachable!(),
}
}
}
impl Prescaler {
pub fn compute_min_high_res(val: u32) -> Self {
*[
Prescaler::Div1,
Prescaler::Div2,
Prescaler::Div4,
Prescaler::Div8,
Prescaler::Div16,
Prescaler::Div32,
Prescaler::Div64,
Prescaler::Div128,
]
.iter()
.skip_while(|psc| <Prescaler as Into<u32>>::into(**psc) <= val)
.next()
.unwrap()
}
pub fn compute_min_low_res(val: u32) -> Self {
*[Prescaler::Div32, Prescaler::Div64, Prescaler::Div128]
.iter()
.skip_while(|psc| <Prescaler as Into<u32>>::into(**psc) <= val)
.next()
.unwrap()
}
}
pub(crate) mod sealed {
use super::*;
pub trait Instance: RccPeripheral {
fn regs() -> crate::pac::hrtim::Hrtim;
fn set_master_frequency(frequency: Hertz);
fn set_channel_frequency(channnel: usize, frequency: Hertz);
/// Set the dead time as a proportion of max_duty
fn set_channel_dead_time(channnel: usize, dead_time: u16);
// fn enable_outputs(enable: bool);
//
// fn enable_channel(&mut self, channel: usize, enable: bool);
}
}
pub trait Instance: sealed::Instance + 'static {}
foreach_interrupt! {
($inst:ident, hrtim, HRTIM, MASTER, $irq:ident) => {
impl sealed::Instance for crate::peripherals::$inst {
fn regs() -> crate::pac::hrtim::Hrtim {
crate::pac::$inst
}
fn set_master_frequency(frequency: Hertz) {
use crate::rcc::sealed::RccPeripheral;
let f = frequency.0;
let timer_f = Self::frequency().0;
let psc_min = (timer_f / f) / (u16::MAX as u32 / 32);
let psc = if Self::regs().isr().read().dllrdy() {
Prescaler::compute_min_high_res(psc_min)
} else {
Prescaler::compute_min_low_res(psc_min)
};
let psc_val: u32 = psc.into();
let timer_f = 32 * (timer_f / psc_val);
let per: u16 = (timer_f / f) as u16;
let regs = Self::regs();
regs.mcr().modify(|w| w.set_ckpsc(psc.into()));
regs.mper().modify(|w| w.set_mper(per));
}
fn set_channel_frequency(channel: usize, frequency: Hertz) {
use crate::rcc::sealed::RccPeripheral;
let f = frequency.0;
let timer_f = Self::frequency().0;
let psc_min = (timer_f / f) / (u16::MAX as u32 / 32);
let psc = if Self::regs().isr().read().dllrdy() {
Prescaler::compute_min_high_res(psc_min)
} else {
Prescaler::compute_min_low_res(psc_min)
};
let psc_val: u32 = psc.into();
let timer_f = 32 * (timer_f / psc_val);
let per: u16 = (timer_f / f) as u16;
let regs = Self::regs();
regs.tim(channel).cr().modify(|w| w.set_ckpsc(psc.into()));
regs.tim(channel).per().modify(|w| w.set_per(per));
}
fn set_channel_dead_time(channel: usize, dead_time: u16) {
let regs = Self::regs();
let channel_psc: Prescaler = regs.tim(channel).cr().read().ckpsc().into();
let psc_val: u32 = channel_psc.into();
// The dead-time base clock runs 4 times slower than the hrtim base clock
// u9::MAX = 511
let psc_min = (psc_val * dead_time as u32) / (4 * 511);
let psc = if Self::regs().isr().read().dllrdy() {
Prescaler::compute_min_high_res(psc_min)
} else {
Prescaler::compute_min_low_res(psc_min)
};
let dt_psc_val: u32 = psc.into();
let dt_val = (dt_psc_val * dead_time as u32) / (4 * psc_val);
regs.tim(channel).dt().modify(|w| {
w.set_dtprsc(psc.into());
w.set_dtf(dt_val as u16);
w.set_dtr(dt_val as u16);
});
}
}
impl Instance for crate::peripherals::$inst {
}
};
}

View File

@ -26,6 +26,8 @@ pub mod timer;
pub mod adc;
#[cfg(can)]
pub mod can;
#[cfg(crc)]
pub mod crc;
#[cfg(dac)]
pub mod dac;
#[cfg(dcmi)]
@ -34,14 +36,13 @@ pub mod dcmi;
pub mod eth;
#[cfg(feature = "exti")]
pub mod exti;
pub mod flash;
#[cfg(fmc)]
pub mod fmc;
#[cfg(hrtim_v1)]
pub mod hrtim;
#[cfg(i2c)]
pub mod i2c;
#[cfg(crc)]
pub mod crc;
pub mod flash;
#[cfg(all(spi_v1, rcc_f4))]
pub mod i2s;
#[cfg(stm32wb)]

View File

@ -264,6 +264,7 @@ fn calc_pll(config: &Config, Hertz(sysclk): Hertz) -> (Hertz, PllConfig) {
}
#[inline]
#[allow(unused_variables)]
fn get_usb_pre(config: &Config, sysclk: u32, pclk1: u32, pll_config: &Option<PllConfig>) -> Usbpre {
cfg_if::cfg_if! {
// Some chips do not have USB

View File

@ -0,0 +1,9 @@
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
# replace STM32F429ZITx with your chip as listed in `probe-rs-cli chip list`
runner = "probe-run --chip STM32F334R8"
[build]
target = "thumbv7em-none-eabihf"
[env]
DEFMT_LOG = "trace"

View File

@ -0,0 +1,26 @@
[package]
edition = "2021"
name = "embassy-stm32f3-examples"
version = "0.1.0"
license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.2.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.2.0", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f334r8", "unstable-pac", "memory-x", "time-driver-any", "exti"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
defmt = "0.3"
defmt-rtt = "0.4"
cortex-m = { version = "0.7.6", features = ["inline-asm", "critical-section-single-core"] }
cortex-m-rt = "0.7.0"
embedded-hal = "0.2.6"
panic-probe = { version = "0.3", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
heapless = { version = "0.7.5", default-features = false }
nb = "1.0.0"
embedded-storage = "0.3.0"
static_cell = { version = "1.1", features = ["nightly"]}

View File

@ -0,0 +1,5 @@
fn main() {
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
println!("cargo:rustc-link-arg-bins=-Tdefmt.x");
}

View File

@ -0,0 +1,27 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::gpio::{Level, Output, Speed};
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello World!");
let p = embassy_stm32::init(Default::default());
let mut out1 = Output::new(p.PA8, Level::Low, Speed::High);
out1.set_high();
Timer::after(Duration::from_millis(500)).await;
out1.set_low();
Timer::after(Duration::from_millis(500)).await;
info!("end program");
cortex_m::asm::bkpt();
}

View File

@ -0,0 +1,23 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::info;
use embassy_executor::Spawner;
use embassy_stm32::time::Hertz;
use embassy_stm32::Config;
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) -> ! {
let mut config = Config::default();
config.rcc.hse = Some(Hertz(8_000_000));
config.rcc.sysclk = Some(Hertz(16_000_000));
let _p = embassy_stm32::init(config);
loop {
info!("Hello World!");
Timer::after(Duration::from_secs(1)).await;
}
}

View File

@ -0,0 +1,71 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::hrtim::*;
use embassy_stm32::time::{khz, mhz};
use embassy_stm32::Config;
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config: Config = Default::default();
config.rcc.sysclk = Some(mhz(64));
config.rcc.hclk = Some(mhz(64));
config.rcc.pclk1 = Some(mhz(32));
config.rcc.pclk2 = Some(mhz(64));
let p = embassy_stm32::init(config);
info!("Hello World!");
let ch1 = PwmPin::new_cha(p.PA8);
let ch1n = ComplementaryPwmPin::new_cha(p.PA9);
let pwm = AdvancedPwm::new(
p.HRTIM1,
Some(ch1),
Some(ch1n),
None,
None,
None,
None,
None,
None,
None,
None,
);
info!("pwm constructed");
let mut buck_converter = BridgeConverter::new(pwm.ch_a, khz(5));
// embassy_stm32::pac::HRTIM1
// .tim(0)
// .setr(0)
// .modify(|w| w.set_sst(Activeeffect::SETACTIVE));
//
// Timer::after(Duration::from_millis(500)).await;
//
// embassy_stm32::pac::HRTIM1
// .tim(0)
// .rstr(0)
// .modify(|w| w.set_srt(Inactiveeffect::SETINACTIVE));
let max_duty = buck_converter.get_max_compare_value();
info!("max compare value: {}", max_duty);
buck_converter.set_dead_time(max_duty / 20);
buck_converter.set_primary_duty(max_duty / 2);
buck_converter.set_secondary_duty(3 * max_duty / 4);
buck_converter.start();
Timer::after(Duration::from_millis(500)).await;
info!("end program");
cortex_m::asm::bkpt();
}