merge embassy/master

This commit is contained in:
sander 2023-04-11 13:48:34 +02:00
commit c309797488
160 changed files with 6748 additions and 3549 deletions

5
ci.sh
View File

@ -49,6 +49,7 @@ cargo batch \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f411ce,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f411ce,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f413vh,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f413vh,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f429zi,log,exti,time-driver-any,unstable-traits,embedded-sdmmc \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f429zi,log,exti,time-driver-any,unstable-traits,embedded-sdmmc \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32f730i8,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h755zi-cm7,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h755zi-cm7,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h7b3ai,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h7b3ai,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l476vg,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l476vg,defmt,exti,time-driver-any,unstable-traits \
@ -65,6 +66,8 @@ cargo batch \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f107vc,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f107vc,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f103re,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f103re,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f100c4,defmt,exti,time-driver-any,unstable-traits \ --- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32f100c4,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32h503rb,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7m-none-eabi --features nightly,stm32h562ag,defmt,exti,time-driver-any,unstable-traits \
--- build --release --manifest-path embassy-boot/nrf/Cargo.toml --target thumbv7em-none-eabi --features embassy-nrf/nrf52840 \ --- build --release --manifest-path embassy-boot/nrf/Cargo.toml --target thumbv7em-none-eabi --features embassy-nrf/nrf52840 \
--- build --release --manifest-path embassy-boot/nrf/Cargo.toml --target thumbv8m.main-none-eabihf --features embassy-nrf/nrf9160-ns \ --- build --release --manifest-path embassy-boot/nrf/Cargo.toml --target thumbv8m.main-none-eabihf --features embassy-nrf/nrf9160-ns \
--- build --release --manifest-path embassy-boot/rp/Cargo.toml --target thumbv6m-none-eabi \ --- build --release --manifest-path embassy-boot/rp/Cargo.toml --target thumbv6m-none-eabi \
@ -86,6 +89,7 @@ cargo batch \
--- build --release --manifest-path examples/stm32c0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32c0 \ --- build --release --manifest-path examples/stm32c0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32c0 \
--- build --release --manifest-path examples/stm32g0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32g0 \ --- build --release --manifest-path examples/stm32g0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32g0 \
--- build --release --manifest-path examples/stm32g4/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32g4 \ --- build --release --manifest-path examples/stm32g4/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32g4 \
--- build --release --manifest-path examples/stm32h5/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32h5 \
--- build --release --manifest-path examples/stm32h7/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32h7 \ --- build --release --manifest-path examples/stm32h7/Cargo.toml --target thumbv7em-none-eabi --out-dir out/examples/stm32h7 \
--- build --release --manifest-path examples/stm32l0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32l0 \ --- build --release --manifest-path examples/stm32l0/Cargo.toml --target thumbv6m-none-eabi --out-dir out/examples/stm32l0 \
--- build --release --manifest-path examples/stm32l1/Cargo.toml --target thumbv7m-none-eabi --out-dir out/examples/stm32l1 \ --- build --release --manifest-path examples/stm32l1/Cargo.toml --target thumbv7m-none-eabi --out-dir out/examples/stm32l1 \
@ -115,6 +119,7 @@ cargo batch \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32g071rb --out-dir out/tests/nucleo-stm32g071rb \ --- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32g071rb --out-dir out/tests/nucleo-stm32g071rb \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32h755zi --out-dir out/tests/nucleo-stm32h755zi \ --- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32h755zi --out-dir out/tests/nucleo-stm32h755zi \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32wb55rg --out-dir out/tests/nucleo-stm32wb55rg \ --- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32wb55rg --out-dir out/tests/nucleo-stm32wb55rg \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32h563zi --out-dir out/tests/nucleo-stm32h563zi \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32u585ai --out-dir out/tests/iot-stm32u585ai \ --- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32u585ai --out-dir out/tests/iot-stm32u585ai \
--- build --release --manifest-path tests/rp/Cargo.toml --target thumbv6m-none-eabi --out-dir out/tests/rpi-pico \ --- build --release --manifest-path tests/rp/Cargo.toml --target thumbv6m-none-eabi --out-dir out/tests/rpi-pico \
--- build --release --manifest-path tests/nrf/Cargo.toml --target thumbv7em-none-eabi --out-dir out/tests/nrf52840-dk \ --- build --release --manifest-path tests/nrf/Cargo.toml --target thumbv7em-none-eabi --out-dir out/tests/nrf52840-dk \

View File

@ -6,7 +6,7 @@ version = "0.1.0"
license = "MIT OR Apache-2.0" license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-executor = { version = "0.1.0", path = "../../../../../embassy-executor", features = ["defmt", "nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../../embassy-executor", features = ["defmt", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../../embassy-time", features = ["defmt", "nightly"] } embassy-time = { version = "0.1.0", path = "../../../../../embassy-time", features = ["defmt", "nightly"] }
embassy-nrf = { version = "0.1.0", path = "../../../../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "nightly"] } embassy-nrf = { version = "0.1.0", path = "../../../../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "nightly"] }

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
cortex-m = "0.7" cortex-m = "0.7"
cortex-m-rt = "0.7" cortex-m-rt = "0.7"
embassy-stm32 = { version = "0.1.0", features = ["stm32l475vg", "memory-x", "exti"], default-features = false } embassy-stm32 = { version = "0.1.0", features = ["stm32l475vg", "memory-x", "exti"], default-features = false }
embassy-executor = { version = "0.1.0", default-features = false, features = ["nightly"] } embassy-executor = { version = "0.1.0", default-features = false, features = ["nightly", "arch-cortex-m", "executor-thread"] }
defmt = "0.3.0" defmt = "0.3.0"
defmt-rtt = "0.3.0" defmt-rtt = "0.3.0"

View File

@ -24,6 +24,7 @@ features = ["defmt"]
[dependencies] [dependencies]
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }
digest = "0.10"
log = { version = "0.4", optional = true } log = { version = "0.4", optional = true }
ed25519-dalek = { version = "1.0.1", default_features = false, features = ["u32_backend"], optional = true } ed25519-dalek = { version = "1.0.1", default_features = false, features = ["u32_backend"], optional = true }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../../embassy-sync" }
@ -37,6 +38,7 @@ log = "0.4"
env_logger = "0.9" env_logger = "0.9"
rand = "0.7" # ed25519-dalek v1.0.1 depends on this exact version rand = "0.7" # ed25519-dalek v1.0.1 depends on this exact version
futures = { version = "0.3", features = ["executor"] } futures = { version = "0.3", features = ["executor"] }
sha1 = "0.10.5"
[dev-dependencies.ed25519-dalek] [dev-dependencies.ed25519-dalek]
default_features = false default_features = false

View File

@ -0,0 +1,533 @@
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use crate::{Partition, State, BOOT_MAGIC, SWAP_MAGIC};
/// Errors returned by bootloader
#[derive(PartialEq, Eq, Debug)]
pub enum BootError {
/// Error from flash.
Flash(NorFlashErrorKind),
/// Invalid bootloader magic
BadMagic,
}
#[cfg(feature = "defmt")]
impl defmt::Format for BootError {
fn format(&self, fmt: defmt::Formatter) {
match self {
BootError::Flash(_) => defmt::write!(fmt, "BootError::Flash(_)"),
BootError::BadMagic => defmt::write!(fmt, "BootError::BadMagic"),
}
}
}
impl<E> From<E> for BootError
where
E: NorFlashError,
{
fn from(error: E) -> Self {
BootError::Flash(error.kind())
}
}
/// Trait defining the flash handles used for active and DFU partition.
pub trait FlashConfig {
/// The erase value of the state flash. Typically the default of 0xFF is used, but some flashes use a different value.
const STATE_ERASE_VALUE: u8 = 0xFF;
/// Flash type used for the state partition.
type STATE: NorFlash;
/// Flash type used for the active partition.
type ACTIVE: NorFlash;
/// Flash type used for the dfu partition.
type DFU: NorFlash;
/// Return flash instance used to write/read to/from active partition.
fn active(&mut self) -> &mut Self::ACTIVE;
/// Return flash instance used to write/read to/from dfu partition.
fn dfu(&mut self) -> &mut Self::DFU;
/// Return flash instance used to write/read to/from bootloader state.
fn state(&mut self) -> &mut Self::STATE;
}
trait FlashConfigEx {
fn page_size() -> u32;
}
impl<T: FlashConfig> FlashConfigEx for T {
/// Get the page size which is the "unit of operation" within the bootloader.
fn page_size() -> u32 {
core::cmp::max(T::ACTIVE::ERASE_SIZE, T::DFU::ERASE_SIZE) as u32
}
}
/// BootLoader works with any flash implementing embedded_storage.
pub struct BootLoader {
// Page with current state of bootloader. The state partition has the following format:
// All ranges are in multiples of WRITE_SIZE bytes.
// | Range | Description |
// | 0..1 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
// | 1..2 | Progress validity. ERASE_VALUE means valid, !ERASE_VALUE means invalid. |
// | 2..2 + N | Progress index used while swapping or reverting |
state: Partition,
// Location of the partition which will be booted from
active: Partition,
// Location of the partition which will be swapped in when requested
dfu: Partition,
}
impl BootLoader {
/// Create a new instance of a bootloader with the given partitions.
///
/// - All partitions must be aligned with the PAGE_SIZE const generic parameter.
/// - The dfu partition must be at least PAGE_SIZE bigger than the active partition.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self { active, dfu, state }
}
/// Return the offset of the active partition into the active flash.
pub fn boot_address(&self) -> usize {
self.active.from as usize
}
/// Perform necessary boot preparations like swapping images.
///
/// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
/// algorithm to work correctly.
///
/// The provided aligned_buf argument must satisfy any alignment requirements
/// given by the partition flashes. All flash operations will use this buffer.
///
/// SWAPPING
///
/// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
/// The swap index contains the copy progress, as to allow continuation of the copy process on
/// power failure. The index counter is represented within 1 or more pages (depending on total
/// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE)
/// contains a zero value. This ensures that index updates can be performed atomically and
/// avoid a situation where the wrong index value is set (page write size is "atomic").
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 0 | 1 | 2 | 3 | - |
/// | DFU | 0 | 3 | 2 | 1 | X |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The algorithm starts by copying 'backwards', and after the first step, the layout is
/// as follows:
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 1 | 1 | 2 | 1 | - |
/// | DFU | 1 | 3 | 2 | 1 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// The next iteration performs the same steps
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 2 | 1 | 2 | 1 | - |
/// | DFU | 2 | 3 | 2 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// And again until we're done
///
/// +-----------+------------+--------+--------+--------+--------+
/// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+------------+--------+--------+--------+--------+
/// | Active | 3 | 3 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+------------+--------+--------+--------+--------+
///
/// REVERTING
///
/// The reverting algorithm uses the swap index to discover that images were swapped, but that
/// the application failed to mark the boot successful. In this case, the revert algorithm will
/// run.
///
/// The revert index is located separately from the swap index, to ensure that revert can continue
/// on power failure.
///
/// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
//*/
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 1 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 1 | - |
/// | DFU | 3 | 3 | 2 | 2 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
/// +-----------+--------------+--------+--------+--------+--------+
/// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
/// +-----------+--------------+--------+--------+--------+--------+
/// | Active | 3 | 1 | 2 | 3 | - |
/// | DFU | 3 | 3 | 2 | 1 | 3 |
/// +-----------+--------------+--------+--------+--------+--------+
///
pub fn prepare_boot<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<State, BootError> {
// Ensure we have enough progress pages to store copy progress
assert_eq!(0, P::page_size() % aligned_buf.len() as u32);
assert_eq!(0, P::page_size() % P::ACTIVE::WRITE_SIZE as u32);
assert_eq!(0, P::page_size() % P::ACTIVE::ERASE_SIZE as u32);
assert_eq!(0, P::page_size() % P::DFU::WRITE_SIZE as u32);
assert_eq!(0, P::page_size() % P::DFU::ERASE_SIZE as u32);
assert!(aligned_buf.len() >= P::STATE::WRITE_SIZE);
assert_eq!(0, aligned_buf.len() % P::ACTIVE::WRITE_SIZE);
assert_eq!(0, aligned_buf.len() % P::DFU::WRITE_SIZE);
assert_partitions(self.active, self.dfu, self.state, P::page_size(), P::STATE::WRITE_SIZE);
// Copy contents from partition N to active
let state = self.read_state(p, aligned_buf)?;
if state == State::Swap {
//
// Check if we already swapped. If we're in the swap state, this means we should revert
// since the app has failed to mark boot as successful
//
if !self.is_swapped(p, aligned_buf)? {
trace!("Swapping");
self.swap(p, aligned_buf)?;
trace!("Swapping done");
} else {
trace!("Reverting");
self.revert(p, aligned_buf)?;
let state_flash = p.state();
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
// Invalidate progress
state_word.fill(!P::STATE_ERASE_VALUE);
self.state
.write_blocking(state_flash, P::STATE::WRITE_SIZE as u32, state_word)?;
// Clear magic and progress
self.state.wipe_blocking(state_flash)?;
// Set magic
state_word.fill(BOOT_MAGIC);
self.state.write_blocking(state_flash, 0, state_word)?;
}
}
Ok(state)
}
fn is_swapped<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<bool, BootError> {
let page_count = (self.active.size() / P::page_size()) as usize;
let progress = self.current_progress(p, aligned_buf)?;
Ok(progress >= page_count * 2)
}
fn current_progress<P: FlashConfig>(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result<usize, BootError> {
let write_size = P::STATE::WRITE_SIZE as u32;
let max_index = (((self.state.size() - write_size) / write_size) - 2) as usize;
let state_flash = config.state();
let state_word = &mut aligned_buf[..write_size as usize];
self.state.read_blocking(state_flash, write_size, state_word)?;
if state_word.iter().any(|&b| b != P::STATE_ERASE_VALUE) {
// Progress is invalid
return Ok(max_index);
}
for index in 0..max_index {
self.state
.read_blocking(state_flash, (2 + index) as u32 * write_size, state_word)?;
if state_word.iter().any(|&b| b == P::STATE_ERASE_VALUE) {
return Ok(index);
}
}
Ok(max_index)
}
fn update_progress<P: FlashConfig>(
&mut self,
progress_index: usize,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
state_word.fill(!P::STATE_ERASE_VALUE);
self.state.write_blocking(
p.state(),
(2 + progress_index) as u32 * P::STATE::WRITE_SIZE as u32,
state_word,
)?;
Ok(())
}
fn copy_page_once_to_active<P: FlashConfig>(
&mut self,
progress_index: usize,
from_offset: u32,
to_offset: u32,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
if self.current_progress(p, aligned_buf)? <= progress_index {
let page_size = P::page_size() as u32;
self.active
.erase_blocking(p.active(), to_offset, to_offset + page_size)?;
for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
self.dfu
.read_blocking(p.dfu(), from_offset + offset_in_page as u32, aligned_buf)?;
self.active
.write_blocking(p.active(), to_offset + offset_in_page as u32, aligned_buf)?;
}
self.update_progress(progress_index, p, aligned_buf)?;
}
Ok(())
}
fn copy_page_once_to_dfu<P: FlashConfig>(
&mut self,
progress_index: usize,
from_offset: u32,
to_offset: u32,
p: &mut P,
aligned_buf: &mut [u8],
) -> Result<(), BootError> {
if self.current_progress(p, aligned_buf)? <= progress_index {
let page_size = P::page_size() as u32;
self.dfu
.erase_blocking(p.dfu(), to_offset as u32, to_offset + page_size)?;
for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
self.active
.read_blocking(p.active(), from_offset + offset_in_page as u32, aligned_buf)?;
self.dfu
.write_blocking(p.dfu(), to_offset + offset_in_page as u32, aligned_buf)?;
}
self.update_progress(progress_index, p, aligned_buf)?;
}
Ok(())
}
fn swap<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> {
let page_size = P::page_size();
let page_count = self.active.size() / page_size;
for page_num in 0..page_count {
let progress_index = (page_num * 2) as usize;
// Copy active page to the 'next' DFU page.
let active_from_offset = (page_count - 1 - page_num) * page_size;
let dfu_to_offset = (page_count - page_num) * page_size;
//trace!("Copy active {} to dfu {}", active_from_offset, dfu_to_offset);
self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, p, aligned_buf)?;
// Copy DFU page to the active page
let active_to_offset = (page_count - 1 - page_num) * page_size;
let dfu_from_offset = (page_count - 1 - page_num) * page_size;
//trace!("Copy dfy {} to active {}", dfu_from_offset, active_to_offset);
self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?;
}
Ok(())
}
fn revert<P: FlashConfig>(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> {
let page_size = P::page_size();
let page_count = self.active.size() / page_size;
for page_num in 0..page_count {
let progress_index = (page_count * 2 + page_num * 2) as usize;
// Copy the bad active page to the DFU page
let active_from_offset = page_num * page_size;
let dfu_to_offset = page_num * page_size;
self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, p, aligned_buf)?;
// Copy the DFU page back to the active page
let active_to_offset = page_num * page_size;
let dfu_from_offset = (page_num + 1) * page_size;
self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?;
}
Ok(())
}
fn read_state<P: FlashConfig>(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result<State, BootError> {
let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE];
self.state.read_blocking(config.state(), 0, state_word)?;
if !state_word.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
}
fn assert_partitions(active: Partition, dfu: Partition, state: Partition, page_size: u32, state_write_size: usize) {
assert_eq!(active.size() % page_size, 0);
assert_eq!(dfu.size() % page_size, 0);
assert!(dfu.size() - active.size() >= page_size);
assert!(2 + 2 * (active.size() / page_size) <= state.size() / state_write_size as u32);
}
/// A flash wrapper implementing the Flash and embedded_storage traits.
pub struct BootFlash<F>
where
F: NorFlash,
{
flash: F,
}
impl<F> BootFlash<F>
where
F: NorFlash,
{
/// Create a new instance of a bootable flash
pub fn new(flash: F) -> Self {
Self { flash }
}
}
impl<F> ErrorType for BootFlash<F>
where
F: NorFlash,
{
type Error = F::Error;
}
impl<F> NorFlash for BootFlash<F>
where
F: NorFlash,
{
const WRITE_SIZE: usize = F::WRITE_SIZE;
const ERASE_SIZE: usize = F::ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
F::erase(&mut self.flash, from, to)
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
F::write(&mut self.flash, offset, bytes)
}
}
impl<F> ReadNorFlash for BootFlash<F>
where
F: NorFlash,
{
const READ_SIZE: usize = F::READ_SIZE;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
F::read(&mut self.flash, offset, bytes)
}
fn capacity(&self) -> usize {
F::capacity(&self.flash)
}
}
/// Convenience provider that uses a single flash for all partitions.
pub struct SingleFlashConfig<'a, F>
where
F: NorFlash,
{
flash: &'a mut F,
}
impl<'a, F> SingleFlashConfig<'a, F>
where
F: NorFlash,
{
/// Create a provider for a single flash.
pub fn new(flash: &'a mut F) -> Self {
Self { flash }
}
}
impl<'a, F> FlashConfig for SingleFlashConfig<'a, F>
where
F: NorFlash,
{
type STATE = F;
type ACTIVE = F;
type DFU = F;
fn active(&mut self) -> &mut Self::STATE {
self.flash
}
fn dfu(&mut self) -> &mut Self::ACTIVE {
self.flash
}
fn state(&mut self) -> &mut Self::DFU {
self.flash
}
}
/// Convenience flash provider that uses separate flash instances for each partition.
pub struct MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash,
STATE: NorFlash,
DFU: NorFlash,
{
active: &'a mut ACTIVE,
state: &'a mut STATE,
dfu: &'a mut DFU,
}
impl<'a, ACTIVE, STATE, DFU> MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash,
STATE: NorFlash,
DFU: NorFlash,
{
/// Create a new flash provider with separate configuration for all three partitions.
pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self {
Self { active, state, dfu }
}
}
impl<'a, ACTIVE, STATE, DFU> FlashConfig for MultiFlashConfig<'a, ACTIVE, STATE, DFU>
where
ACTIVE: NorFlash,
STATE: NorFlash,
DFU: NorFlash,
{
type STATE = STATE;
type ACTIVE = ACTIVE;
type DFU = DFU;
fn active(&mut self) -> &mut Self::ACTIVE {
self.active
}
fn dfu(&mut self) -> &mut Self::DFU {
self.dfu
}
fn state(&mut self) -> &mut Self::STATE {
self.state
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn test_range_asserts() {
const ACTIVE: Partition = Partition::new(4096, 4194304);
const DFU: Partition = Partition::new(4194304, 2 * 4194304);
const STATE: Partition = Partition::new(0, 4096);
assert_partitions(ACTIVE, DFU, STATE, 4096, 4);
}
}

View File

@ -0,0 +1,30 @@
use digest::typenum::U64;
use digest::{FixedOutput, HashMarker, OutputSizeUser, Update};
use ed25519_dalek::Digest as _;
pub struct Sha512(ed25519_dalek::Sha512);
impl Default for Sha512 {
fn default() -> Self {
Self(ed25519_dalek::Sha512::new())
}
}
impl Update for Sha512 {
fn update(&mut self, data: &[u8]) {
self.0.update(data)
}
}
impl FixedOutput for Sha512 {
fn finalize_into(self, out: &mut digest::Output<Self>) {
let result = self.0.finalize();
out.as_mut_slice().copy_from_slice(result.as_slice())
}
}
impl OutputSizeUser for Sha512 {
type OutputSize = U64;
}
impl HashMarker for Sha512 {}

View File

@ -0,0 +1,5 @@
#[cfg(feature = "ed25519-dalek")]
pub(crate) mod ed25519_dalek;
#[cfg(feature = "ed25519-salty")]
pub(crate) mod salty;

View File

@ -0,0 +1,29 @@
use digest::typenum::U64;
use digest::{FixedOutput, HashMarker, OutputSizeUser, Update};
pub struct Sha512(salty::Sha512);
impl Default for Sha512 {
fn default() -> Self {
Self(salty::Sha512::new())
}
}
impl Update for Sha512 {
fn update(&mut self, data: &[u8]) {
self.0.update(data)
}
}
impl FixedOutput for Sha512 {
fn finalize_into(self, out: &mut digest::Output<Self>) {
let result = self.0.finalize();
out.as_mut_slice().copy_from_slice(result.as_slice())
}
}
impl OutputSizeUser for Sha512 {
type OutputSize = U64;
}
impl HashMarker for Sha512 {}

View File

@ -0,0 +1,534 @@
use digest::Digest;
use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind};
use embedded_storage_async::nor_flash::NorFlash as AsyncNorFlash;
use crate::{Partition, State, BOOT_MAGIC, SWAP_MAGIC};
/// Errors returned by FirmwareUpdater
#[derive(Debug)]
pub enum FirmwareUpdaterError {
/// Error from flash.
Flash(NorFlashErrorKind),
/// Signature errors.
Signature(signature::Error),
}
#[cfg(feature = "defmt")]
impl defmt::Format for FirmwareUpdaterError {
fn format(&self, fmt: defmt::Formatter) {
match self {
FirmwareUpdaterError::Flash(_) => defmt::write!(fmt, "FirmwareUpdaterError::Flash(_)"),
FirmwareUpdaterError::Signature(_) => defmt::write!(fmt, "FirmwareUpdaterError::Signature(_)"),
}
}
}
impl<E> From<E> for FirmwareUpdaterError
where
E: NorFlashError,
{
fn from(error: E) -> Self {
FirmwareUpdaterError::Flash(error.kind())
}
}
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
/// 'mess up' the internal bootloader state
pub struct FirmwareUpdater {
state: Partition,
dfu: Partition,
}
impl Default for FirmwareUpdater {
fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as u32,
&__bootloader_dfu_end as *const u32 as u32,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as u32,
&__bootloader_state_end as *const u32 as u32,
)
};
trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to);
trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to);
FirmwareUpdater::new(dfu, state)
}
}
impl FirmwareUpdater {
/// Create a firmware updater instance with partition ranges for the update and state partitions.
pub const fn new(dfu: Partition, state: Partition) -> Self {
Self { dfu, state }
}
/// Obtain the current state.
///
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub async fn get_state<F: AsyncNorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<State, FirmwareUpdaterError> {
self.state.read(state_flash, 0, aligned).await?;
if !aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
/// Verify the DFU given a public key. If there is an error then DO NOT
/// proceed with updating the firmware as it must be signed with a
/// corresponding private key (otherwise it could be malicious firmware).
///
/// Mark to trigger firmware swap on next boot if verify suceeds.
///
/// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have
/// been generated from a SHA-512 digest of the firmware bytes.
///
/// If no signature feature is set then this method will always return a
/// signature error.
///
/// # Safety
///
/// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
#[cfg(feature = "_verify")]
pub async fn verify_and_mark_updated<F: AsyncNorFlash>(
&mut self,
_state_and_dfu_flash: &mut F,
_public_key: &[u8],
_signature: &[u8],
_update_len: u32,
_aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(_aligned.len(), F::WRITE_SIZE);
assert!(_update_len <= self.dfu.size());
#[cfg(feature = "ed25519-dalek")]
{
use ed25519_dalek::{PublicKey, Signature, SignatureError, Verifier};
use crate::digest_adapters::ed25519_dalek::Sha512;
let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into());
let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?;
let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash::<_, Sha512>(_state_and_dfu_flash, _update_len, _aligned, &mut message)
.await?;
public_key.verify(&message, &signature).map_err(into_signature_error)?
}
#[cfg(feature = "ed25519-salty")]
{
use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH};
use salty::{PublicKey, Signature};
use crate::digest_adapters::salty::Sha512;
fn into_signature_error<E>(_: E) -> FirmwareUpdaterError {
FirmwareUpdaterError::Signature(signature::Error::default())
}
let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?;
let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?;
let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?;
let signature = Signature::try_from(&signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash::<_, Sha512>(_state_and_dfu_flash, _update_len, _aligned, &mut message)
.await?;
let r = public_key.verify(&message, &signature);
trace!(
"Verifying with public key {}, signature {} and message {} yields ok: {}",
public_key.to_bytes(),
signature.to_bytes(),
message,
r.is_ok()
);
r.map_err(into_signature_error)?
}
self.set_magic(_aligned, SWAP_MAGIC, _state_and_dfu_flash).await
}
/// Verify the update in DFU with any digest.
pub async fn hash<F: AsyncNorFlash, D: Digest>(
&mut self,
dfu_flash: &mut F,
update_len: u32,
chunk_buf: &mut [u8],
output: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
let mut digest = D::new();
for offset in (0..update_len).step_by(chunk_buf.len()) {
self.dfu.read(dfu_flash, offset, chunk_buf).await?;
let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len());
digest.update(&chunk_buf[..len]);
}
output.copy_from_slice(digest.finalize().as_slice());
Ok(())
}
/// Mark to trigger firmware swap on next boot.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
#[cfg(not(feature = "_verify"))]
pub async fn mark_updated<F: AsyncNorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic(aligned, SWAP_MAGIC, state_flash).await
}
/// Mark firmware boot successful and stop rollback on reset.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub async fn mark_booted<F: AsyncNorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic(aligned, BOOT_MAGIC, state_flash).await
}
async fn set_magic<F: AsyncNorFlash>(
&mut self,
aligned: &mut [u8],
magic: u8,
state_flash: &mut F,
) -> Result<(), FirmwareUpdaterError> {
self.state.read(state_flash, 0, aligned).await?;
if aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read(state_flash, F::WRITE_SIZE as u32, aligned).await?;
// FIXME: Do not make this assumption.
const STATE_ERASE_VALUE: u8 = 0xFF;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write(state_flash, F::WRITE_SIZE as u32, aligned).await?;
}
// Clear magic and progress
self.state.wipe(state_flash).await?;
// Set magic
aligned.fill(magic);
self.state.write(state_flash, 0, aligned).await?;
}
Ok(())
}
/// Write data to a flash page.
///
/// The buffer must follow alignment requirements of the target flash and a multiple of page size big.
///
/// # Safety
///
/// Failing to meet alignment and size requirements may result in a panic.
pub async fn write_firmware<F: AsyncNorFlash>(
&mut self,
offset: usize,
data: &[u8],
dfu_flash: &mut F,
) -> Result<(), FirmwareUpdaterError> {
assert!(data.len() >= F::ERASE_SIZE);
self.dfu
.erase(dfu_flash, offset as u32, (offset + data.len()) as u32)
.await?;
self.dfu.write(dfu_flash, offset as u32, data).await?;
Ok(())
}
/// Prepare for an incoming DFU update by erasing the entire DFU area and
/// returning its `Partition`.
///
/// Using this instead of `write_firmware` allows for an optimized API in
/// exchange for added complexity.
pub async fn prepare_update<F: AsyncNorFlash>(
&mut self,
dfu_flash: &mut F,
) -> Result<Partition, FirmwareUpdaterError> {
self.dfu.wipe(dfu_flash).await?;
Ok(self.dfu)
}
//
// Blocking API
//
/// Obtain the current state.
///
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub fn get_state_blocking<F: NorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<State, FirmwareUpdaterError> {
self.state.read_blocking(state_flash, 0, aligned)?;
if !aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
/// Verify the DFU given a public key. If there is an error then DO NOT
/// proceed with updating the firmware as it must be signed with a
/// corresponding private key (otherwise it could be malicious firmware).
///
/// Mark to trigger firmware swap on next boot if verify suceeds.
///
/// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have
/// been generated from a SHA-512 digest of the firmware bytes.
///
/// If no signature feature is set then this method will always return a
/// signature error.
///
/// # Safety
///
/// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
#[cfg(feature = "_verify")]
pub fn verify_and_mark_updated_blocking<F: NorFlash>(
&mut self,
_state_and_dfu_flash: &mut F,
_public_key: &[u8],
_signature: &[u8],
_update_len: u32,
_aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(_aligned.len(), F::WRITE_SIZE);
assert!(_update_len <= self.dfu.size());
#[cfg(feature = "ed25519-dalek")]
{
use ed25519_dalek::{PublicKey, Signature, SignatureError, Verifier};
use crate::digest_adapters::ed25519_dalek::Sha512;
let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into());
let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?;
let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash_blocking::<_, Sha512>(_state_and_dfu_flash, _update_len, _aligned, &mut message)?;
public_key.verify(&message, &signature).map_err(into_signature_error)?
}
#[cfg(feature = "ed25519-salty")]
{
use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH};
use salty::{PublicKey, Signature};
use crate::digest_adapters::salty::Sha512;
fn into_signature_error<E>(_: E) -> FirmwareUpdaterError {
FirmwareUpdaterError::Signature(signature::Error::default())
}
let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?;
let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?;
let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?;
let signature = Signature::try_from(&signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash_blocking::<_, Sha512>(_state_and_dfu_flash, _update_len, _aligned, &mut message)?;
let r = public_key.verify(&message, &signature);
trace!(
"Verifying with public key {}, signature {} and message {} yields ok: {}",
public_key.to_bytes(),
signature.to_bytes(),
message,
r.is_ok()
);
r.map_err(into_signature_error)?
}
self.set_magic_blocking(_aligned, SWAP_MAGIC, _state_and_dfu_flash)
}
/// Verify the update in DFU with any digest.
pub fn hash_blocking<F: NorFlash, D: Digest>(
&mut self,
dfu_flash: &mut F,
update_len: u32,
chunk_buf: &mut [u8],
output: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
let mut digest = D::new();
for offset in (0..update_len).step_by(chunk_buf.len()) {
self.dfu.read_blocking(dfu_flash, offset, chunk_buf)?;
let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len());
digest.update(&chunk_buf[..len]);
}
output.copy_from_slice(digest.finalize().as_slice());
Ok(())
}
/// Mark to trigger firmware swap on next boot.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
#[cfg(not(feature = "_verify"))]
pub fn mark_updated_blocking<F: NorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic_blocking(aligned, SWAP_MAGIC, state_flash)
}
/// Mark firmware boot successful and stop rollback on reset.
///
/// # Safety
///
/// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub fn mark_booted_blocking<F: NorFlash>(
&mut self,
state_flash: &mut F,
aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), F::WRITE_SIZE);
self.set_magic_blocking(aligned, BOOT_MAGIC, state_flash)
}
fn set_magic_blocking<F: NorFlash>(
&mut self,
aligned: &mut [u8],
magic: u8,
state_flash: &mut F,
) -> Result<(), FirmwareUpdaterError> {
self.state.read_blocking(state_flash, 0, aligned)?;
if aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read_blocking(state_flash, F::WRITE_SIZE as u32, aligned)?;
// FIXME: Do not make this assumption.
const STATE_ERASE_VALUE: u8 = 0xFF;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write_blocking(state_flash, F::WRITE_SIZE as u32, aligned)?;
}
// Clear magic and progress
self.state.wipe_blocking(state_flash)?;
// Set magic
aligned.fill(magic);
self.state.write_blocking(state_flash, 0, aligned)?;
}
Ok(())
}
/// Write data to a flash page.
///
/// The buffer must follow alignment requirements of the target flash and a multiple of page size big.
///
/// # Safety
///
/// Failing to meet alignment and size requirements may result in a panic.
pub fn write_firmware_blocking<F: NorFlash>(
&mut self,
offset: usize,
data: &[u8],
dfu_flash: &mut F,
) -> Result<(), FirmwareUpdaterError> {
assert!(data.len() >= F::ERASE_SIZE);
self.dfu
.erase_blocking(dfu_flash, offset as u32, (offset + data.len()) as u32)?;
self.dfu.write_blocking(dfu_flash, offset as u32, data)?;
Ok(())
}
/// Prepare for an incoming DFU update by erasing the entire DFU area and
/// returning its `Partition`.
///
/// Using this instead of `write_firmware_blocking` allows for an optimized
/// API in exchange for added complexity.
pub fn prepare_update_blocking<F: NorFlash>(&mut self, flash: &mut F) -> Result<Partition, FirmwareUpdaterError> {
self.dfu.wipe_blocking(flash)?;
Ok(self.dfu)
}
}
#[cfg(test)]
mod tests {
use futures::executor::block_on;
use sha1::{Digest, Sha1};
use super::*;
use crate::mem_flash::MemFlash;
#[test]
fn can_verify_sha1() {
const STATE: Partition = Partition::new(0, 4096);
const DFU: Partition = Partition::new(65536, 131072);
let mut flash = MemFlash::<131072, 4096, 8>::default();
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
let mut to_write = [0; 4096];
to_write[..7].copy_from_slice(update.as_slice());
let mut updater = FirmwareUpdater::new(DFU, STATE);
block_on(updater.write_firmware(0, to_write.as_slice(), &mut flash)).unwrap();
let mut chunk_buf = [0; 2];
let mut hash = [0; 20];
block_on(updater.hash::<_, Sha1>(&mut flash, update.len() as u32, &mut chunk_buf, &mut hash)).unwrap();
assert_eq!(Sha1::digest(update).as_slice(), hash);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,164 @@
#![allow(unused)]
use core::ops::{Bound, Range, RangeBounds};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
pub struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> {
pub mem: [u8; SIZE],
pub pending_write_successes: Option<usize>,
}
#[derive(Debug)]
pub struct MemFlashError;
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE> {
pub const fn new(fill: u8) -> Self {
Self {
mem: [fill; SIZE],
pending_write_successes: None,
}
}
#[cfg(test)]
pub fn random() -> Self {
let mut mem = [0; SIZE];
for byte in mem.iter_mut() {
*byte = rand::random::<u8>();
}
Self {
mem,
pending_write_successes: None,
}
}
pub fn program(&mut self, offset: u32, bytes: &[u8]) -> Result<(), MemFlashError> {
let offset = offset as usize;
assert!(bytes.len() % WRITE_SIZE == 0);
assert!(offset % WRITE_SIZE == 0);
assert!(offset + bytes.len() <= SIZE);
self.mem[offset..offset + bytes.len()].copy_from_slice(bytes);
Ok(())
}
pub fn assert_eq(&self, offset: u32, expectation: &[u8]) {
for i in 0..expectation.len() {
assert_eq!(self.mem[offset as usize + i], expectation[i], "Index {}", i);
}
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> Default
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
fn default() -> Self {
Self::new(0xFF)
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = MemFlashError;
}
impl NorFlashError for MemFlashError {
fn kind(&self) -> NorFlashErrorKind {
NorFlashErrorKind::Other
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
let len = bytes.len();
bytes.copy_from_slice(&self.mem[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert!(from % ERASE_SIZE == 0);
assert!(to % ERASE_SIZE == 0, "To: {}, erase size: {}", to, ERASE_SIZE);
for i in from..to {
self.mem[i] = 0xFF;
}
Ok(())
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
let offset = offset as usize;
assert!(bytes.len() % WRITE_SIZE == 0);
assert!(offset % WRITE_SIZE == 0);
assert!(offset + bytes.len() <= SIZE);
if let Some(pending_successes) = self.pending_write_successes {
if pending_successes > 0 {
self.pending_write_successes = Some(pending_successes - 1);
} else {
return Err(MemFlashError);
}
}
for ((offset, mem_byte), new_byte) in self
.mem
.iter_mut()
.enumerate()
.skip(offset)
.take(bytes.len())
.zip(bytes)
{
assert_eq!(0xFF, *mem_byte, "Offset {} is not erased", offset);
*mem_byte = *new_byte;
}
Ok(())
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
<Self as ReadNorFlash>::read(self, offset, bytes)
}
fn capacity(&self) -> usize {
<Self as ReadNorFlash>::capacity(self)
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
<Self as NorFlash>::erase(self, from, to)
}
async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
<Self as NorFlash>::write(self, offset, bytes)
}
}

View File

@ -0,0 +1,139 @@
use embedded_storage::nor_flash::{NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
/// A region in flash used by the bootloader.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Partition {
/// The offset into the flash where the partition starts.
pub from: u32,
/// The offset into the flash where the partition ends.
pub to: u32,
}
impl Partition {
/// Create a new partition with the provided range
pub const fn new(from: u32, to: u32) -> Self {
Self { from, to }
}
/// Return the size of the partition
pub const fn size(&self) -> u32 {
self.to - self.from
}
/// Read from the partition on the provided flash
pub async fn read<F: AsyncReadNorFlash>(
&self,
flash: &mut F,
offset: u32,
bytes: &mut [u8],
) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.read(offset, bytes).await
}
/// Write to the partition on the provided flash
pub async fn write<F: AsyncNorFlash>(&self, flash: &mut F, offset: u32, bytes: &[u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.write(offset, bytes).await?;
trace!("Wrote from 0x{:x} len {}", offset, bytes.len());
Ok(())
}
/// Erase part of the partition on the provided flash
pub async fn erase<F: AsyncNorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
let from = self.from as u32 + from;
let to = self.from as u32 + to;
flash.erase(from, to).await?;
trace!("Erased from 0x{:x} to 0x{:x}", from, to);
Ok(())
}
/// Erase the entire partition
pub(crate) async fn wipe<F: AsyncNorFlash>(&self, flash: &mut F) -> Result<(), F::Error> {
let from = self.from as u32;
let to = self.to as u32;
flash.erase(from, to).await?;
trace!("Wiped from 0x{:x} to 0x{:x}", from, to);
Ok(())
}
/// Read from the partition on the provided flash
pub fn read_blocking<F: ReadNorFlash>(&self, flash: &mut F, offset: u32, bytes: &mut [u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.read(offset, bytes)
}
/// Write to the partition on the provided flash
pub fn write_blocking<F: NorFlash>(&self, flash: &mut F, offset: u32, bytes: &[u8]) -> Result<(), F::Error> {
let offset = self.from as u32 + offset;
flash.write(offset, bytes)?;
trace!("Wrote from 0x{:x} len {}", offset, bytes.len());
Ok(())
}
/// Erase part of the partition on the provided flash
pub fn erase_blocking<F: NorFlash>(&self, flash: &mut F, from: u32, to: u32) -> Result<(), F::Error> {
let from = self.from as u32 + from;
let to = self.from as u32 + to;
flash.erase(from, to)?;
trace!("Erased from 0x{:x} to 0x{:x}", from, to);
Ok(())
}
/// Erase the entire partition
pub(crate) fn wipe_blocking<F: NorFlash>(&self, flash: &mut F) -> Result<(), F::Error> {
let from = self.from as u32;
let to = self.to as u32;
flash.erase(from, to)?;
trace!("Wiped from 0x{:x} to 0x{:x}", from, to);
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::mem_flash::MemFlash;
use crate::Partition;
#[test]
fn can_erase() {
let mut flash = MemFlash::<1024, 64, 4>::new(0x00);
let partition = Partition::new(256, 512);
partition.erase_blocking(&mut flash, 64, 192).unwrap();
for (index, byte) in flash.mem.iter().copied().enumerate().take(256 + 64) {
assert_eq!(0x00, byte, "Index {}", index);
}
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256 + 64).take(128) {
assert_eq!(0xFF, byte, "Index {}", index);
}
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256 + 64 + 128) {
assert_eq!(0x00, byte, "Index {}", index);
}
}
#[test]
fn can_wipe() {
let mut flash = MemFlash::<1024, 64, 4>::new(0x00);
let partition = Partition::new(256, 512);
partition.wipe_blocking(&mut flash).unwrap();
for (index, byte) in flash.mem.iter().copied().enumerate().take(256) {
assert_eq!(0x00, byte, "Index {}", index);
}
for (index, byte) in flash.mem.iter().copied().enumerate().skip(256).take(256) {
assert_eq!(0xFF, byte, "Index {}", index);
}
for (index, byte) in flash.mem.iter().copied().enumerate().skip(512) {
assert_eq!(0x00, byte, "Index {}", index);
}
}
}

View File

@ -11,13 +11,12 @@ use embassy_nrf::wdt;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash}; use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
/// A bootloader for nRF devices. /// A bootloader for nRF devices.
pub struct BootLoader { pub struct BootLoader<const BUFFER_SIZE: usize = PAGE_SIZE> {
boot: embassy_boot::BootLoader, boot: embassy_boot::BootLoader,
magic: AlignedBuffer<4>, aligned_buf: AlignedBuffer<BUFFER_SIZE>,
page: AlignedBuffer<PAGE_SIZE>,
} }
impl Default for BootLoader { impl Default for BootLoader<PAGE_SIZE> {
/// Create a new bootloader instance using parameters from linker script /// Create a new bootloader instance using parameters from linker script
fn default() -> Self { fn default() -> Self {
extern "C" { extern "C" {
@ -31,20 +30,20 @@ impl Default for BootLoader {
let active = unsafe { let active = unsafe {
Partition::new( Partition::new(
&__bootloader_active_start as *const u32 as usize, &__bootloader_active_start as *const u32 as u32,
&__bootloader_active_end as *const u32 as usize, &__bootloader_active_end as *const u32 as u32,
) )
}; };
let dfu = unsafe { let dfu = unsafe {
Partition::new( Partition::new(
&__bootloader_dfu_start as *const u32 as usize, &__bootloader_dfu_start as *const u32 as u32,
&__bootloader_dfu_end as *const u32 as usize, &__bootloader_dfu_end as *const u32 as u32,
) )
}; };
let state = unsafe { let state = unsafe {
Partition::new( Partition::new(
&__bootloader_state_start as *const u32 as usize, &__bootloader_state_start as *const u32 as u32,
&__bootloader_state_end as *const u32 as usize, &__bootloader_state_end as *const u32 as u32,
) )
}; };
@ -56,20 +55,19 @@ impl Default for BootLoader {
} }
} }
impl BootLoader { impl<const BUFFER_SIZE: usize> BootLoader<BUFFER_SIZE> {
/// Create a new bootloader instance using the supplied partitions for active, dfu and state. /// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self { pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self { Self {
boot: embassy_boot::BootLoader::new(active, dfu, state), boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; 4]), aligned_buf: AlignedBuffer([0; BUFFER_SIZE]),
page: AlignedBuffer([0; PAGE_SIZE]),
} }
} }
/// Inspect the bootloader state and perform actions required before booting, such as swapping /// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware. /// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize { pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, &mut self.magic.0, &mut self.page.0) { match self.boot.prepare_boot(flash, &mut self.aligned_buf.0) {
Ok(_) => self.boot.boot_address(), Ok(_) => self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"), Err(_) => panic!("boot prepare error!"),
} }

View File

@ -5,33 +5,31 @@
mod fmt; mod fmt;
pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig, State}; pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig, State};
use embassy_rp::flash::{Flash, ERASE_SIZE, WRITE_SIZE}; use embassy_rp::flash::{Flash, ERASE_SIZE};
use embassy_rp::peripherals::{FLASH, WATCHDOG}; use embassy_rp::peripherals::{FLASH, WATCHDOG};
use embassy_rp::watchdog::Watchdog; use embassy_rp::watchdog::Watchdog;
use embassy_time::Duration; use embassy_time::Duration;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash}; use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
/// A bootloader for RP2040 devices. /// A bootloader for RP2040 devices.
pub struct BootLoader { pub struct BootLoader<const BUFFER_SIZE: usize = ERASE_SIZE> {
boot: embassy_boot::BootLoader, boot: embassy_boot::BootLoader,
magic: AlignedBuffer<WRITE_SIZE>, aligned_buf: AlignedBuffer<BUFFER_SIZE>,
page: AlignedBuffer<ERASE_SIZE>,
} }
impl BootLoader { impl<const BUFFER_SIZE: usize> BootLoader<BUFFER_SIZE> {
/// Create a new bootloader instance using the supplied partitions for active, dfu and state. /// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self { pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self { Self {
boot: embassy_boot::BootLoader::new(active, dfu, state), boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; WRITE_SIZE]), aligned_buf: AlignedBuffer([0; BUFFER_SIZE]),
page: AlignedBuffer([0; ERASE_SIZE]),
} }
} }
/// Inspect the bootloader state and perform actions required before booting, such as swapping /// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware. /// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize { pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, self.magic.as_mut(), self.page.as_mut()) { match self.boot.prepare_boot(flash, self.aligned_buf.as_mut()) {
Ok(_) => embassy_rp::flash::FLASH_BASE + self.boot.boot_address(), Ok(_) => embassy_rp::flash::FLASH_BASE + self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"), Err(_) => panic!("boot prepare error!"),
} }
@ -54,7 +52,7 @@ impl BootLoader {
} }
} }
impl Default for BootLoader { impl Default for BootLoader<ERASE_SIZE> {
/// Create a new bootloader instance using parameters from linker script /// Create a new bootloader instance using parameters from linker script
fn default() -> Self { fn default() -> Self {
extern "C" { extern "C" {
@ -68,20 +66,20 @@ impl Default for BootLoader {
let active = unsafe { let active = unsafe {
Partition::new( Partition::new(
&__bootloader_active_start as *const u32 as usize, &__bootloader_active_start as *const u32 as u32,
&__bootloader_active_end as *const u32 as usize, &__bootloader_active_end as *const u32 as u32,
) )
}; };
let dfu = unsafe { let dfu = unsafe {
Partition::new( Partition::new(
&__bootloader_dfu_start as *const u32 as usize, &__bootloader_dfu_start as *const u32 as u32,
&__bootloader_dfu_end as *const u32 as usize, &__bootloader_dfu_end as *const u32 as u32,
) )
}; };
let state = unsafe { let state = unsafe {
Partition::new( Partition::new(
&__bootloader_state_start as *const u32 as usize, &__bootloader_state_start as *const u32 as u32,
&__bootloader_state_end as *const u32 as usize, &__bootloader_state_end as *const u32 as u32,
) )
}; };

View File

@ -7,26 +7,24 @@ mod fmt;
pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig, State}; pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig, State};
/// A bootloader for STM32 devices. /// A bootloader for STM32 devices.
pub struct BootLoader<const PAGE_SIZE: usize, const WRITE_SIZE: usize> { pub struct BootLoader<const BUFFER_SIZE: usize> {
boot: embassy_boot::BootLoader, boot: embassy_boot::BootLoader,
magic: AlignedBuffer<WRITE_SIZE>, aligned_buf: AlignedBuffer<BUFFER_SIZE>,
page: AlignedBuffer<PAGE_SIZE>,
} }
impl<const PAGE_SIZE: usize, const WRITE_SIZE: usize> BootLoader<PAGE_SIZE, WRITE_SIZE> { impl<const BUFFER_SIZE: usize> BootLoader<BUFFER_SIZE> {
/// Create a new bootloader instance using the supplied partitions for active, dfu and state. /// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self { pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self { Self {
boot: embassy_boot::BootLoader::new(active, dfu, state), boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; WRITE_SIZE]), aligned_buf: AlignedBuffer([0; BUFFER_SIZE]),
page: AlignedBuffer([0; PAGE_SIZE]),
} }
} }
/// Inspect the bootloader state and perform actions required before booting, such as swapping /// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware. /// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize { pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, self.magic.as_mut(), self.page.as_mut()) { match self.boot.prepare_boot(flash, self.aligned_buf.as_mut()) {
Ok(_) => embassy_stm32::flash::FLASH_BASE + self.boot.boot_address(), Ok(_) => embassy_stm32::flash::FLASH_BASE + self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"), Err(_) => panic!("boot prepare error!"),
} }
@ -49,7 +47,7 @@ impl<const PAGE_SIZE: usize, const WRITE_SIZE: usize> BootLoader<PAGE_SIZE, WRIT
} }
} }
impl<const PAGE_SIZE: usize, const WRITE_SIZE: usize> Default for BootLoader<PAGE_SIZE, WRITE_SIZE> { impl<const BUFFER_SIZE: usize> Default for BootLoader<BUFFER_SIZE> {
/// Create a new bootloader instance using parameters from linker script /// Create a new bootloader instance using parameters from linker script
fn default() -> Self { fn default() -> Self {
extern "C" { extern "C" {
@ -63,20 +61,20 @@ impl<const PAGE_SIZE: usize, const WRITE_SIZE: usize> Default for BootLoader<PAG
let active = unsafe { let active = unsafe {
Partition::new( Partition::new(
&__bootloader_active_start as *const u32 as usize, &__bootloader_active_start as *const u32 as u32,
&__bootloader_active_end as *const u32 as usize, &__bootloader_active_end as *const u32 as u32,
) )
}; };
let dfu = unsafe { let dfu = unsafe {
Partition::new( Partition::new(
&__bootloader_dfu_start as *const u32 as usize, &__bootloader_dfu_start as *const u32 as u32,
&__bootloader_dfu_end as *const u32 as usize, &__bootloader_dfu_end as *const u32 as u32,
) )
}; };
let state = unsafe { let state = unsafe {
Partition::new( Partition::new(
&__bootloader_state_start as *const u32 as usize, &__bootloader_state_start as *const u32 as u32,
&__bootloader_state_end as *const u32 as usize, &__bootloader_state_end as *const u32 as u32,
) )
}; };

View File

@ -1,116 +0,0 @@
//! Executor specific to cortex-m devices.
use core::cell::UnsafeCell;
use core::mem::MaybeUninit;
use atomic_polyfill::{AtomicBool, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
pub use embassy_executor::*;
#[derive(Clone, Copy)]
struct N(u16);
unsafe impl cortex_m::interrupt::InterruptNumber for N {
fn number(self) -> u16 {
self.0
}
}
fn pend_by_number(n: u16) {
cortex_m::peripheral::NVIC::pend(N(n))
}
/// Interrupt mode executor.
///
/// This executor runs tasks in interrupt mode. The interrupt handler is set up
/// to poll tasks, and when a task is woken the interrupt is pended from software.
///
/// This allows running async tasks at a priority higher than thread mode. One
/// use case is to leave thread mode free for non-async tasks. Another use case is
/// to run multiple executors: one in thread mode for low priority tasks and another in
/// interrupt mode for higher priority tasks. Higher priority tasks will preempt lower
/// priority ones.
///
/// It is even possible to run multiple interrupt mode executors at different priorities,
/// by assigning different priorities to the interrupts. For an example on how to do this,
/// See the 'multiprio' example for 'embassy-nrf'.
///
/// To use it, you have to pick an interrupt that won't be used by the hardware.
/// Some chips reserve some interrupts for this purpose, sometimes named "software interrupts" (SWI).
/// If this is not the case, you may use an interrupt from any unused peripheral.
///
/// It is somewhat more complex to use, it's recommended to use the thread-mode
/// [`Executor`] instead, if it works for your use case.
pub struct InterruptExecutor {
started: AtomicBool,
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
}
unsafe impl Send for InterruptExecutor {}
unsafe impl Sync for InterruptExecutor {}
impl InterruptExecutor {
/// Create a new, not started `InterruptExecutor`.
#[inline]
pub const fn new() -> Self {
Self {
started: AtomicBool::new(false),
executor: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Executor interrupt callback.
///
/// # Safety
///
/// You MUST call this from the interrupt handler, and from nowhere else.
pub unsafe fn on_interrupt(&'static self) {
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
executor.poll();
}
/// Start the executor.
///
/// This initializes the executor, enables the interrupt, and returns.
/// The executor keeps running in the background through the interrupt.
///
/// This returns a [`SendSpawner`] you can use to spawn tasks on it. A [`SendSpawner`]
/// is returned instead of a [`Spawner`](embassy_executor::Spawner) because the executor effectively runs in a
/// different "thread" (the interrupt), so spawning tasks on it is effectively
/// sending them.
///
/// To obtain a [`Spawner`](embassy_executor::Spawner) for this executor, use [`Spawner::for_current_executor()`](embassy_executor::Spawner::for_current_executor()) from
/// a task running in it.
///
/// # Interrupt requirements
///
/// You must write the interrupt handler yourself, and make it call [`on_interrupt()`](Self::on_interrupt).
///
/// This method already enables (unmasks) the interrupt, you must NOT do it yourself.
///
/// You must set the interrupt priority before calling this method. You MUST NOT
/// do it after.
///
pub fn start(&'static self, irq: impl InterruptNumber) -> SendSpawner {
if self
.started
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
panic!("InterruptExecutor::start() called multiple times on the same executor.");
}
unsafe {
(&mut *self.executor.get()).as_mut_ptr().write(raw::Executor::new(
|ctx| pend_by_number(ctx as u16),
irq.number() as *mut (),
))
}
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
unsafe { NVIC::unmask(irq) }
executor.spawner().make_send()
}
}

View File

@ -5,6 +5,6 @@
// This mod MUST go first, so that the others see its macros. // This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt; pub(crate) mod fmt;
pub mod executor; pub use embassy_executor as executor;
pub mod interrupt; pub mod interrupt;
pub mod peripheral; pub mod peripheral;

View File

@ -19,8 +19,8 @@ nightly = ["embedded-hal-async", "embedded-storage-async"]
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../embassy-sync" }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] } embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9" } embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10" }
embedded-hal-async = { version = "=0.2.0-alpha.0", optional = true } embedded-hal-async = { version = "=0.2.0-alpha.1", optional = true }
embedded-storage = "0.3.0" embedded-storage = "0.3.0"
embedded-storage-async = { version = "0.4.0", optional = true } embedded-storage-async = { version = "0.4.0", optional = true }
nb = "1.0.0" nb = "1.0.0"

View File

@ -36,27 +36,22 @@ where
E: embedded_hal_1::i2c::Error + 'static, E: embedded_hal_1::i2c::Error + 'static,
T: blocking::i2c::WriteRead<Error = E> + blocking::i2c::Read<Error = E> + blocking::i2c::Write<Error = E>, T: blocking::i2c::WriteRead<Error = E> + blocking::i2c::Read<Error = E> + blocking::i2c::Write<Error = E>,
{ {
async fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Result<(), Self::Error> { async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.wrapped.read(address, buffer) self.wrapped.read(address, read)
} }
async fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Result<(), Self::Error> { async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.wrapped.write(address, bytes) self.wrapped.write(address, write)
} }
async fn write_read<'a>( async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
&'a mut self, self.wrapped.write_read(address, write, read)
}
async fn transaction(
&mut self,
address: u8, address: u8,
bytes: &'a [u8], operations: &mut [embedded_hal_1::i2c::Operation<'_>],
buffer: &'a mut [u8],
) -> Result<(), Self::Error> {
self.wrapped.write_read(address, bytes, buffer)
}
async fn transaction<'a, 'b>(
&'a mut self,
address: u8,
operations: &'a mut [embedded_hal_async::i2c::Operation<'b>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
let _ = address; let _ = address;
let _ = operations; let _ = operations;

View File

@ -1,7 +1,7 @@
#![cfg_attr(not(feature = "std"), no_std)] #![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr( #![cfg_attr(
feature = "nightly", feature = "nightly",
feature(type_alias_impl_trait, async_fn_in_trait, impl_trait_projections) feature(type_alias_impl_trait, async_fn_in_trait, impl_trait_projections, try_blocks)
)] )]
#![cfg_attr(feature = "nightly", allow(incomplete_features))] #![cfg_attr(feature = "nightly", allow(incomplete_features))]
#![warn(missing_docs)] #![warn(missing_docs)]

View File

@ -54,35 +54,35 @@ where
M: RawMutex + 'static, M: RawMutex + 'static,
BUS: i2c::I2c + 'static, BUS: i2c::I2c + 'static,
{ {
async fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Result<(), I2cDeviceError<BUS::Error>> { async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.read(address, buffer).await.map_err(I2cDeviceError::I2c)?; bus.read(address, read).await.map_err(I2cDeviceError::I2c)?;
Ok(()) Ok(())
} }
async fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Result<(), I2cDeviceError<BUS::Error>> { async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.write(address, bytes).await.map_err(I2cDeviceError::I2c)?; bus.write(address, write).await.map_err(I2cDeviceError::I2c)?;
Ok(()) Ok(())
} }
async fn write_read<'a>( async fn write_read(
&'a mut self, &mut self,
address: u8, address: u8,
wr_buffer: &'a [u8], write: &[u8],
rd_buffer: &'a mut [u8], read: &mut [u8],
) -> Result<(), I2cDeviceError<BUS::Error>> { ) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.write_read(address, wr_buffer, rd_buffer) bus.write_read(address, write, read)
.await .await
.map_err(I2cDeviceError::I2c)?; .map_err(I2cDeviceError::I2c)?;
Ok(()) Ok(())
} }
async fn transaction<'a, 'b>( async fn transaction(
&'a mut self, &mut self,
address: u8, address: u8,
operations: &'a mut [embedded_hal_async::i2c::Operation<'b>], operations: &mut [embedded_hal_async::i2c::Operation<'_>],
) -> Result<(), I2cDeviceError<BUS::Error>> { ) -> Result<(), I2cDeviceError<BUS::Error>> {
let _ = address; let _ = address;
let _ = operations; let _ = operations;
@ -121,25 +121,25 @@ where
M: RawMutex + 'static, M: RawMutex + 'static,
BUS: i2c::I2c + SetConfig + 'static, BUS: i2c::I2c + SetConfig + 'static,
{ {
async fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Result<(), I2cDeviceError<BUS::Error>> { async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.set_config(&self.config); bus.set_config(&self.config);
bus.read(address, buffer).await.map_err(I2cDeviceError::I2c)?; bus.read(address, buffer).await.map_err(I2cDeviceError::I2c)?;
Ok(()) Ok(())
} }
async fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Result<(), I2cDeviceError<BUS::Error>> { async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.set_config(&self.config); bus.set_config(&self.config);
bus.write(address, bytes).await.map_err(I2cDeviceError::I2c)?; bus.write(address, bytes).await.map_err(I2cDeviceError::I2c)?;
Ok(()) Ok(())
} }
async fn write_read<'a>( async fn write_read(
&'a mut self, &mut self,
address: u8, address: u8,
wr_buffer: &'a [u8], wr_buffer: &[u8],
rd_buffer: &'a mut [u8], rd_buffer: &mut [u8],
) -> Result<(), I2cDeviceError<BUS::Error>> { ) -> Result<(), I2cDeviceError<BUS::Error>> {
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.set_config(&self.config); bus.set_config(&self.config);
@ -149,11 +149,7 @@ where
Ok(()) Ok(())
} }
async fn transaction<'a, 'b>( async fn transaction(&mut self, address: u8, operations: &mut [i2c::Operation<'_>]) -> Result<(), Self::Error> {
&'a mut self,
address: u8,
operations: &'a mut [embedded_hal_async::i2c::Operation<'b>],
) -> Result<(), I2cDeviceError<BUS::Error>> {
let _ = address; let _ = address;
let _ = operations; let _ = operations;
todo!() todo!()

View File

@ -25,12 +25,11 @@
//! let spi_dev2 = SpiDevice::new(spi_bus, cs_pin2); //! let spi_dev2 = SpiDevice::new(spi_bus, cs_pin2);
//! let display2 = ST7735::new(spi_dev2, dc2, rst2, Default::default(), 160, 128); //! let display2 = ST7735::new(spi_dev2, dc2, rst2, Default::default(), 160, 128);
//! ``` //! ```
use core::future::Future;
use embassy_sync::blocking_mutex::raw::RawMutex; use embassy_sync::blocking_mutex::raw::RawMutex;
use embassy_sync::mutex::Mutex; use embassy_sync::mutex::Mutex;
use embedded_hal_1::digital::OutputPin; use embedded_hal_1::digital::OutputPin;
use embedded_hal_1::spi::ErrorType; use embedded_hal_1::spi::Operation;
use embedded_hal_async::spi; use embedded_hal_async::spi;
use crate::shared_bus::SpiDeviceError; use crate::shared_bus::SpiDeviceError;
@ -57,33 +56,92 @@ where
type Error = SpiDeviceError<BUS::Error, CS::Error>; type Error = SpiDeviceError<BUS::Error, CS::Error>;
} }
unsafe impl<M, BUS, CS> spi::SpiDevice for SpiDevice<'_, M, BUS, CS> impl<M, BUS, CS> spi::SpiDeviceRead for SpiDevice<'_, M, BUS, CS>
where where
M: RawMutex + 'static, M: RawMutex,
BUS: spi::SpiBusFlush + 'static, BUS: spi::SpiBusRead,
CS: OutputPin, CS: OutputPin,
{ {
type Bus = BUS; async fn read_transaction(&mut self, operations: &mut [&mut [u8]]) -> Result<(), Self::Error> {
async fn transaction<R, F, Fut>(&mut self, f: F) -> Result<R, Self::Error>
where
F: FnOnce(*mut Self::Bus) -> Fut,
Fut: Future<Output = Result<R, <Self::Bus as ErrorType>::Error>>,
{
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = f(&mut *bus).await; let op_res: Result<(), BUS::Error> = try {
for buf in operations {
bus.read(buf).await?;
}
};
// On failure, it's important to still flush and deassert CS. // On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await; let flush_res = bus.flush().await;
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
}
}
impl<M, BUS, CS> spi::SpiDeviceWrite for SpiDevice<'_, M, BUS, CS>
where
M: RawMutex,
BUS: spi::SpiBusWrite,
CS: OutputPin,
{
async fn write_transaction(&mut self, operations: &[&[u8]]) -> Result<(), Self::Error> {
let mut bus = self.bus.lock().await;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
for buf in operations {
bus.write(buf).await?;
}
};
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await;
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
}
}
impl<M, BUS, CS> spi::SpiDevice for SpiDevice<'_, M, BUS, CS>
where
M: RawMutex,
BUS: spi::SpiBus,
CS: OutputPin,
{
async fn transaction(&mut self, operations: &mut [spi::Operation<'_, u8>]) -> Result<(), Self::Error> {
let mut bus = self.bus.lock().await;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
}
}
};
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await;
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
} }
} }
@ -114,33 +172,94 @@ where
type Error = SpiDeviceError<BUS::Error, CS::Error>; type Error = SpiDeviceError<BUS::Error, CS::Error>;
} }
unsafe impl<M, BUS, CS> spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS> impl<M, BUS, CS> spi::SpiDeviceWrite for SpiDeviceWithConfig<'_, M, BUS, CS>
where where
M: RawMutex + 'static, M: RawMutex,
BUS: spi::SpiBusFlush + SetConfig + 'static, BUS: spi::SpiBusWrite + SetConfig,
CS: OutputPin, CS: OutputPin,
{ {
type Bus = BUS; async fn write_transaction(&mut self, operations: &[&[u8]]) -> Result<(), Self::Error> {
async fn transaction<R, F, Fut>(&mut self, f: F) -> Result<R, Self::Error>
where
F: FnOnce(*mut Self::Bus) -> Fut,
Fut: Future<Output = Result<R, <Self::Bus as ErrorType>::Error>>,
{
let mut bus = self.bus.lock().await; let mut bus = self.bus.lock().await;
bus.set_config(&self.config); bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = f(&mut *bus).await; let op_res: Result<(), BUS::Error> = try {
for buf in operations {
bus.write(buf).await?;
}
};
// On failure, it's important to still flush and deassert CS. // On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await; let flush_res = bus.flush().await;
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
}
}
impl<M, BUS, CS> spi::SpiDeviceRead for SpiDeviceWithConfig<'_, M, BUS, CS>
where
M: RawMutex,
BUS: spi::SpiBusRead + SetConfig,
CS: OutputPin,
{
async fn read_transaction(&mut self, operations: &mut [&mut [u8]]) -> Result<(), Self::Error> {
let mut bus = self.bus.lock().await;
bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
for buf in operations {
bus.read(buf).await?;
}
};
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await;
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
}
}
impl<M, BUS, CS> spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS>
where
M: RawMutex,
BUS: spi::SpiBus + SetConfig,
CS: OutputPin,
{
async fn transaction(&mut self, operations: &mut [spi::Operation<'_, u8>]) -> Result<(), Self::Error> {
let mut bus = self.bus.lock().await;
bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
}
}
};
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush().await;
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
} }
} }

View File

@ -72,34 +72,6 @@ where
let _ = operations; let _ = operations;
todo!() todo!()
} }
fn write_iter<B: IntoIterator<Item = u8>>(&mut self, addr: u8, bytes: B) -> Result<(), Self::Error> {
let _ = addr;
let _ = bytes;
todo!()
}
fn write_iter_read<B: IntoIterator<Item = u8>>(
&mut self,
addr: u8,
bytes: B,
buffer: &mut [u8],
) -> Result<(), Self::Error> {
let _ = addr;
let _ = bytes;
let _ = buffer;
todo!()
}
fn transaction_iter<'a, O: IntoIterator<Item = Operation<'a>>>(
&mut self,
address: u8,
operations: O,
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
} }
impl<'a, M, BUS, E> embedded_hal_02::blocking::i2c::Write for I2cDevice<'_, M, BUS> impl<'a, M, BUS, E> embedded_hal_02::blocking::i2c::Write for I2cDevice<'_, M, BUS>
@ -204,32 +176,4 @@ where
let _ = operations; let _ = operations;
todo!() todo!()
} }
fn write_iter<B: IntoIterator<Item = u8>>(&mut self, addr: u8, bytes: B) -> Result<(), Self::Error> {
let _ = addr;
let _ = bytes;
todo!()
}
fn write_iter_read<B: IntoIterator<Item = u8>>(
&mut self,
addr: u8,
bytes: B,
buffer: &mut [u8],
) -> Result<(), Self::Error> {
let _ = addr;
let _ = bytes;
let _ = buffer;
todo!()
}
fn transaction_iter<'a, O: IntoIterator<Item = Operation<'a>>>(
&mut self,
address: u8,
operations: O,
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
} }

View File

@ -23,8 +23,7 @@ use core::cell::RefCell;
use embassy_sync::blocking_mutex::raw::RawMutex; use embassy_sync::blocking_mutex::raw::RawMutex;
use embassy_sync::blocking_mutex::Mutex; use embassy_sync::blocking_mutex::Mutex;
use embedded_hal_1::digital::OutputPin; use embedded_hal_1::digital::OutputPin;
use embedded_hal_1::spi; use embedded_hal_1::spi::{self, Operation, SpiBus, SpiBusRead, SpiBusWrite};
use embedded_hal_1::spi::SpiBusFlush;
use crate::shared_bus::SpiDeviceError; use crate::shared_bus::SpiDeviceError;
use crate::SetConfig; use crate::SetConfig;
@ -50,30 +49,85 @@ where
type Error = SpiDeviceError<BUS::Error, CS::Error>; type Error = SpiDeviceError<BUS::Error, CS::Error>;
} }
impl<BUS, M, CS> embedded_hal_1::spi::SpiDevice for SpiDevice<'_, M, BUS, CS> impl<BUS, M, CS> embedded_hal_1::spi::SpiDeviceRead for SpiDevice<'_, M, BUS, CS>
where where
M: RawMutex, M: RawMutex,
BUS: SpiBusFlush, BUS: SpiBusRead,
CS: OutputPin, CS: OutputPin,
{ {
type Bus = BUS; fn read_transaction(&mut self, operations: &mut [&mut [u8]]) -> Result<(), Self::Error> {
fn transaction<R>(&mut self, f: impl FnOnce(&mut Self::Bus) -> Result<R, BUS::Error>) -> Result<R, Self::Error> {
self.bus.lock(|bus| { self.bus.lock(|bus| {
let mut bus = bus.borrow_mut(); let mut bus = bus.borrow_mut();
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = f(&mut bus); let op_res = operations.iter_mut().try_for_each(|buf| bus.read(buf));
// On failure, it's important to still flush and deassert CS. // On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush(); let flush_res = bus.flush();
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
})
}
}
impl<BUS, M, CS> embedded_hal_1::spi::SpiDeviceWrite for SpiDevice<'_, M, BUS, CS>
where
M: RawMutex,
BUS: SpiBusWrite,
CS: OutputPin,
{
fn write_transaction(&mut self, operations: &[&[u8]]) -> Result<(), Self::Error> {
self.bus.lock(|bus| {
let mut bus = bus.borrow_mut();
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res = operations.iter().try_for_each(|buf| bus.write(buf));
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush();
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
})
}
}
impl<BUS, M, CS> embedded_hal_1::spi::SpiDevice for SpiDevice<'_, M, BUS, CS>
where
M: RawMutex,
BUS: SpiBus,
CS: OutputPin,
{
fn transaction(&mut self, operations: &mut [Operation<'_, u8>]) -> Result<(), Self::Error> {
self.bus.lock(|bus| {
let mut bus = bus.borrow_mut();
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res = operations.iter_mut().try_for_each(|op| match op {
Operation::Read(buf) => bus.read(buf),
Operation::Write(buf) => bus.write(buf),
Operation::Transfer(read, write) => bus.transfer(read, write),
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf),
});
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush();
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
}) })
} }
} }
@ -89,11 +143,11 @@ where
self.bus.lock(|bus| { self.bus.lock(|bus| {
let mut bus = bus.borrow_mut(); let mut bus = bus.borrow_mut();
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = bus.transfer(words); let op_res = bus.transfer(words);
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
}) })
} }
} }
@ -110,11 +164,11 @@ where
self.bus.lock(|bus| { self.bus.lock(|bus| {
let mut bus = bus.borrow_mut(); let mut bus = bus.borrow_mut();
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = bus.write(words); let op_res = bus.write(words);
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
}) })
} }
} }
@ -146,30 +200,85 @@ where
type Error = SpiDeviceError<BUS::Error, CS::Error>; type Error = SpiDeviceError<BUS::Error, CS::Error>;
} }
impl<BUS, M, CS> embedded_hal_1::spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS> impl<BUS, M, CS> embedded_hal_1::spi::SpiDeviceRead for SpiDeviceWithConfig<'_, M, BUS, CS>
where where
M: RawMutex, M: RawMutex,
BUS: SpiBusFlush + SetConfig, BUS: SpiBusRead + SetConfig,
CS: OutputPin, CS: OutputPin,
{ {
type Bus = BUS; fn read_transaction(&mut self, operations: &mut [&mut [u8]]) -> Result<(), Self::Error> {
fn transaction<R>(&mut self, f: impl FnOnce(&mut Self::Bus) -> Result<R, BUS::Error>) -> Result<R, Self::Error> {
self.bus.lock(|bus| { self.bus.lock(|bus| {
let mut bus = bus.borrow_mut(); let mut bus = bus.borrow_mut();
bus.set_config(&self.config); bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?; self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let f_res = f(&mut bus); let op_res = operations.iter_mut().try_for_each(|buf| bus.read(buf));
// On failure, it's important to still flush and deassert CS. // On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush(); let flush_res = bus.flush();
let cs_res = self.cs.set_high(); let cs_res = self.cs.set_high();
let f_res = f_res.map_err(SpiDeviceError::Spi)?; let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?; cs_res.map_err(SpiDeviceError::Cs)?;
Ok(f_res) Ok(op_res)
})
}
}
impl<BUS, M, CS> embedded_hal_1::spi::SpiDeviceWrite for SpiDeviceWithConfig<'_, M, BUS, CS>
where
M: RawMutex,
BUS: SpiBusWrite + SetConfig,
CS: OutputPin,
{
fn write_transaction(&mut self, operations: &[&[u8]]) -> Result<(), Self::Error> {
self.bus.lock(|bus| {
let mut bus = bus.borrow_mut();
bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res = operations.iter().try_for_each(|buf| bus.write(buf));
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush();
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
})
}
}
impl<BUS, M, CS> embedded_hal_1::spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS>
where
M: RawMutex,
BUS: SpiBus + SetConfig,
CS: OutputPin,
{
fn transaction(&mut self, operations: &mut [Operation<'_, u8>]) -> Result<(), Self::Error> {
self.bus.lock(|bus| {
let mut bus = bus.borrow_mut();
bus.set_config(&self.config);
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res = operations.iter_mut().try_for_each(|op| match op {
Operation::Read(buf) => bus.read(buf),
Operation::Write(buf) => bus.write(buf),
Operation::Transfer(read, write) => bus.transfer(read, write),
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf),
});
// On failure, it's important to still flush and deassert CS.
let flush_res = bus.flush();
let cs_res = self.cs.set_high();
let op_res = op_res.map_err(SpiDeviceError::Spi)?;
flush_res.map_err(SpiDeviceError::Spi)?;
cs_res.map_err(SpiDeviceError::Cs)?;
Ok(op_res)
}) })
} }
} }

View File

@ -14,30 +14,42 @@ categories = [
[package.metadata.embassy_docs] [package.metadata.embassy_docs]
src_base = "https://github.com/embassy-rs/embassy/blob/embassy-executor-v$VERSION/embassy-executor/src/" src_base = "https://github.com/embassy-rs/embassy/blob/embassy-executor-v$VERSION/embassy-executor/src/"
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-executor/src/" src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-executor/src/"
features = ["nightly", "defmt"] features = ["nightly", "defmt", "pender-callback"]
flavors = [ flavors = [
{ name = "std", target = "x86_64-unknown-linux-gnu", features = ["std"] }, { name = "std", target = "x86_64-unknown-linux-gnu", features = ["arch-std", "executor-thread"] },
{ name = "wasm", target = "wasm32-unknown-unknown", features = ["wasm"] }, { name = "wasm", target = "wasm32-unknown-unknown", features = ["arch-wasm", "executor-thread"] },
{ name = "thumbv6m-none-eabi", target = "thumbv6m-none-eabi", features = [] }, { name = "cortex-m", target = "thumbv7em-none-eabi", features = ["arch-cortex-m", "executor-thread", "executor-interrupt"] },
{ name = "thumbv7m-none-eabi", target = "thumbv7m-none-eabi", features = [] }, { name = "riscv32", target = "riscv32imac-unknown-none-elf", features = ["arch-riscv32", "executor-thread"] },
{ name = "thumbv7em-none-eabi", target = "thumbv7em-none-eabi", features = [] },
{ name = "thumbv7em-none-eabihf", target = "thumbv7em-none-eabihf", features = [] },
{ name = "thumbv8m.base-none-eabi", target = "thumbv8m.base-none-eabi", features = [] },
{ name = "thumbv8m.main-none-eabi", target = "thumbv8m.main-none-eabi", features = [] },
{ name = "thumbv8m.main-none-eabihf", target = "thumbv8m.main-none-eabihf", features = [] },
] ]
[package.metadata.docs.rs] [package.metadata.docs.rs]
features = ["std", "nightly", "defmt"] default-target = "thumbv7em-none-eabi"
targets = ["thumbv7em-none-eabi"]
features = ["nightly", "defmt", "pender-callback", "arch-cortex-m", "executor-thread", "executor-interrupt"]
[features] [features]
default = []
std = ["critical-section/std"] # Architecture
wasm = ["dep:wasm-bindgen", "dep:js-sys"] _arch = [] # some arch was picked
arch-std = ["_arch", "critical-section/std"]
arch-cortex-m = ["_arch", "dep:cortex-m"]
arch-xtensa = ["_arch"]
arch-riscv32 = ["_arch"]
arch-wasm = ["_arch", "dep:wasm-bindgen", "dep:js-sys"]
# Enable creating a `Pender` from an arbitrary function pointer callback.
pender-callback = []
# Enable the thread-mode executor (using WFE/SEV in Cortex-M, WFI in other embedded archs)
executor-thread = []
# Enable the interrupt-mode executor (available in Cortex-M only)
executor-interrupt = []
# Enable nightly-only features # Enable nightly-only features
nightly = [] nightly = []
turbowakers = []
integrated-timers = ["dep:embassy-time"] integrated-timers = ["dep:embassy-time"]
# Trace interrupt invocations with rtos-trace. # Trace interrupt invocations with rtos-trace.
@ -53,9 +65,11 @@ embassy-macros = { version = "0.1.0", path = "../embassy-macros" }
embassy-time = { version = "0.1.0", path = "../embassy-time", optional = true} embassy-time = { version = "0.1.0", path = "../embassy-time", optional = true}
atomic-polyfill = "1.0.1" atomic-polyfill = "1.0.1"
critical-section = "1.1" critical-section = "1.1"
cfg-if = "1.0.0"
static_cell = "1.0" static_cell = "1.0"
# WASM dependencies # arch-cortex-m dependencies
cortex-m = { version = "0.7.6", optional = true }
# arch-wasm dependencies
wasm-bindgen = { version = "0.2.82", optional = true } wasm-bindgen = { version = "0.2.82", optional = true }
js-sys = { version = "0.3", optional = true } js-sys = { version = "0.3", optional = true }

View File

@ -1,8 +1,24 @@
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::arch::asm; use core::arch::asm;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::ptr;
use super::{raw, Spawner}; #[cfg(feature = "nightly")]
pub use embassy_macros::main_cortex_m as main;
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl ThreadPender {
pub(crate) fn pend(self) {
unsafe { core::arch::asm!("sev") }
}
}
/// Thread mode executor, using WFE/SEV. /// Thread mode executor, using WFE/SEV.
/// ///
@ -23,7 +39,7 @@ impl Executor {
/// Create a new Executor. /// Create a new Executor.
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
inner: raw::Executor::new(|_| unsafe { asm!("sev") }, ptr::null_mut()), inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
not_send: PhantomData, not_send: PhantomData,
} }
} }
@ -57,3 +73,137 @@ impl Executor {
} }
} }
} }
}
#[cfg(feature = "executor-interrupt")]
pub use interrupt::*;
#[cfg(feature = "executor-interrupt")]
mod interrupt {
use core::cell::UnsafeCell;
use core::mem::MaybeUninit;
use atomic_polyfill::{AtomicBool, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
use crate::raw::{self, Pender, PenderInner};
#[derive(Clone, Copy)]
pub(crate) struct InterruptPender(u16);
impl InterruptPender {
pub(crate) fn pend(self) {
// STIR is faster, but is only available in v7 and higher.
#[cfg(not(armv6m))]
{
let mut nvic: cortex_m::peripheral::NVIC = unsafe { core::mem::transmute(()) };
nvic.request(self);
}
#[cfg(armv6m)]
cortex_m::peripheral::NVIC::pend(self);
}
}
unsafe impl cortex_m::interrupt::InterruptNumber for InterruptPender {
fn number(self) -> u16 {
self.0
}
}
/// Interrupt mode executor.
///
/// This executor runs tasks in interrupt mode. The interrupt handler is set up
/// to poll tasks, and when a task is woken the interrupt is pended from software.
///
/// This allows running async tasks at a priority higher than thread mode. One
/// use case is to leave thread mode free for non-async tasks. Another use case is
/// to run multiple executors: one in thread mode for low priority tasks and another in
/// interrupt mode for higher priority tasks. Higher priority tasks will preempt lower
/// priority ones.
///
/// It is even possible to run multiple interrupt mode executors at different priorities,
/// by assigning different priorities to the interrupts. For an example on how to do this,
/// See the 'multiprio' example for 'embassy-nrf'.
///
/// To use it, you have to pick an interrupt that won't be used by the hardware.
/// Some chips reserve some interrupts for this purpose, sometimes named "software interrupts" (SWI).
/// If this is not the case, you may use an interrupt from any unused peripheral.
///
/// It is somewhat more complex to use, it's recommended to use the thread-mode
/// [`Executor`] instead, if it works for your use case.
pub struct InterruptExecutor {
started: AtomicBool,
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
}
unsafe impl Send for InterruptExecutor {}
unsafe impl Sync for InterruptExecutor {}
impl InterruptExecutor {
/// Create a new, not started `InterruptExecutor`.
#[inline]
pub const fn new() -> Self {
Self {
started: AtomicBool::new(false),
executor: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Executor interrupt callback.
///
/// # Safety
///
/// You MUST call this from the interrupt handler, and from nowhere else.
pub unsafe fn on_interrupt(&'static self) {
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
executor.poll();
}
/// Start the executor.
///
/// This initializes the executor, enables the interrupt, and returns.
/// The executor keeps running in the background through the interrupt.
///
/// This returns a [`SendSpawner`] you can use to spawn tasks on it. A [`SendSpawner`]
/// is returned instead of a [`Spawner`](embassy_executor::Spawner) because the executor effectively runs in a
/// different "thread" (the interrupt), so spawning tasks on it is effectively
/// sending them.
///
/// To obtain a [`Spawner`](embassy_executor::Spawner) for this executor, use [`Spawner::for_current_executor()`](embassy_executor::Spawner::for_current_executor()) from
/// a task running in it.
///
/// # Interrupt requirements
///
/// You must write the interrupt handler yourself, and make it call [`on_interrupt()`](Self::on_interrupt).
///
/// This method already enables (unmasks) the interrupt, you must NOT do it yourself.
///
/// You must set the interrupt priority before calling this method. You MUST NOT
/// do it after.
///
pub fn start(&'static self, irq: impl InterruptNumber) -> crate::SendSpawner {
if self
.started
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
panic!("InterruptExecutor::start() called multiple times on the same executor.");
}
unsafe {
(&mut *self.executor.get())
.as_mut_ptr()
.write(raw::Executor::new(Pender(PenderInner::Interrupt(InterruptPender(
irq.number(),
)))))
}
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
unsafe { NVIC::unmask(irq) }
executor.spawner().make_send()
}
}
}

View File

@ -1,11 +1,27 @@
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-riscv32`.");
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::marker::PhantomData; use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::{AtomicBool, Ordering}; use core::sync::atomic::{AtomicBool, Ordering};
use super::{raw, Spawner}; use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
SIGNAL_WORK_THREAD_MODE.store(true, core::sync::atomic::Ordering::SeqCst);
}
}
/// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV /// global atomic used to keep track of whether there is work to do since sev() is not available on RISCV
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false); static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
/// RISCV32 Executor /// RISCV32 Executor
@ -18,13 +34,7 @@ impl Executor {
/// Create a new Executor. /// Create a new Executor.
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData, not_send: PhantomData,
} }
} }
@ -71,3 +81,4 @@ impl Executor {
} }
} }
} }
}

View File

@ -1,7 +1,28 @@
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-std`.");
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use std::marker::PhantomData; use std::marker::PhantomData;
use std::sync::{Condvar, Mutex}; use std::sync::{Condvar, Mutex};
use super::{raw, Spawner}; #[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender(&'static Signaler);
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
self.0.signal()
}
}
/// Single-threaded std-based executor. /// Single-threaded std-based executor.
pub struct Executor { pub struct Executor {
@ -15,13 +36,7 @@ impl Executor {
pub fn new() -> Self { pub fn new() -> Self {
let signaler = &*Box::leak(Box::new(Signaler::new())); let signaler = &*Box::leak(Box::new(Signaler::new()));
Self { Self {
inner: raw::Executor::new( inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender(signaler)))),
|p| unsafe {
let s = &*(p as *const () as *const Signaler);
s.signal()
},
signaler as *const _ as _,
),
not_send: PhantomData, not_send: PhantomData,
signaler, signaler,
} }
@ -82,3 +97,4 @@ impl Signaler {
self.condvar.notify_one(); self.condvar.notify_one();
} }
} }
}

View File

@ -1,11 +1,21 @@
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-wasm`.");
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::marker::PhantomData; use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
use js_sys::Promise; use js_sys::Promise;
use wasm_bindgen::prelude::*; use wasm_bindgen::prelude::*;
use super::raw::util::UninitCell; use crate::raw::util::UninitCell;
use super::raw::{self}; use crate::raw::{Pender, PenderInner};
use super::Spawner; use crate::{raw, Spawner};
/// WASM executor, wasm_bindgen to schedule tasks on the JS event loop. /// WASM executor, wasm_bindgen to schedule tasks on the JS event loop.
pub struct Executor { pub struct Executor {
@ -19,6 +29,16 @@ pub(crate) struct WasmContext {
closure: UninitCell<Closure<dyn FnMut(JsValue)>>, closure: UninitCell<Closure<dyn FnMut(JsValue)>>,
} }
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender(&'static WasmContext);
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
let _ = self.0.promise.then(unsafe { self.0.closure.as_mut() });
}
}
impl WasmContext { impl WasmContext {
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
@ -32,15 +52,8 @@ impl Executor {
/// Create a new Executor. /// Create a new Executor.
pub fn new() -> Self { pub fn new() -> Self {
let ctx = &*Box::leak(Box::new(WasmContext::new())); let ctx = &*Box::leak(Box::new(WasmContext::new()));
let inner = raw::Executor::new(
|p| unsafe {
let ctx = &*(p as *const () as *const WasmContext);
let _ = ctx.promise.then(ctx.closure.as_mut());
},
ctx as *const _ as _,
);
Self { Self {
inner, inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender(ctx)))),
not_send: PhantomData, not_send: PhantomData,
ctx, ctx,
} }
@ -72,3 +85,4 @@ impl Executor {
} }
} }
} }
}

View File

@ -1,11 +1,27 @@
#[cfg(feature = "executor-interrupt")]
compile_error!("`executor-interrupt` is not supported with `arch-xtensa`.");
#[cfg(feature = "executor-thread")]
pub use thread::*;
#[cfg(feature = "executor-thread")]
mod thread {
use core::marker::PhantomData; use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::{AtomicBool, Ordering}; use core::sync::atomic::{AtomicBool, Ordering};
use super::{raw, Spawner}; use crate::raw::{Pender, PenderInner};
use crate::{raw, Spawner};
#[derive(Copy, Clone)]
pub(crate) struct ThreadPender;
impl ThreadPender {
#[allow(unused)]
pub(crate) fn pend(self) {
SIGNAL_WORK_THREAD_MODE.store(true, core::sync::atomic::Ordering::SeqCst);
}
}
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa /// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa
///
static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false); static SIGNAL_WORK_THREAD_MODE: AtomicBool = AtomicBool::new(false);
/// Xtensa Executor /// Xtensa Executor
@ -18,13 +34,7 @@ impl Executor {
/// Create a new Executor. /// Create a new Executor.
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
// use Signal_Work_Thread_Mode as substitute for local interrupt register inner: raw::Executor::new(Pender(PenderInner::Thread(ThreadPender))),
inner: raw::Executor::new(
|_| {
SIGNAL_WORK_THREAD_MODE.store(true, Ordering::SeqCst);
},
ptr::null_mut(),
),
not_send: PhantomData, not_send: PhantomData,
} }
} }
@ -72,3 +82,4 @@ impl Executor {
} }
} }
} }
}

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(any(feature = "std", feature = "wasm")), no_std)] #![cfg_attr(not(any(feature = "arch-std", feature = "arch-wasm")), no_std)]
#![cfg_attr(all(feature = "nightly", target_arch = "xtensa"), feature(asm_experimental_arch))] #![cfg_attr(all(feature = "nightly", feature = "arch-xtensa"), feature(asm_experimental_arch))]
#![allow(clippy::new_without_default)] #![allow(clippy::new_without_default)]
#![doc = include_str!("../README.md")] #![doc = include_str!("../README.md")]
#![warn(missing_docs)] #![warn(missing_docs)]
@ -10,47 +10,43 @@ pub(crate) mod fmt;
#[cfg(feature = "nightly")] #[cfg(feature = "nightly")]
pub use embassy_macros::task; pub use embassy_macros::task;
cfg_if::cfg_if! { macro_rules! check_at_most_one {
if #[cfg(cortex_m)] { (@amo [$($feats:literal)*] [] [$($res:tt)*]) => {
#[path="arch/cortex_m.rs"] #[cfg(any($($res)*))]
mod arch; compile_error!(concat!("At most one of these features can be enabled at the same time:", $(" `", $feats, "`",)*));
pub use arch::*; };
#[cfg(feature = "nightly")] (@amo $feats:tt [$curr:literal $($rest:literal)*] [$($res:tt)*]) => {
pub use embassy_macros::main_cortex_m as main; check_at_most_one!(@amo $feats [$($rest)*] [$($res)* $(all(feature=$curr, feature=$rest),)*]);
} };
else if #[cfg(target_arch="riscv32")] { ($($f:literal),*$(,)?) => {
#[path="arch/riscv32.rs"] check_at_most_one!(@amo [$($f)*] [$($f)*] []);
mod arch; };
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_riscv as main;
}
else if #[cfg(all(target_arch="xtensa", feature = "nightly"))] {
#[path="arch/xtensa.rs"]
mod arch;
pub use arch::*;
}
else if #[cfg(feature="wasm")] {
#[path="arch/wasm.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
}
else if #[cfg(feature="std")] {
#[path="arch/std.rs"]
mod arch;
pub use arch::*;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
}
} }
check_at_most_one!("arch-cortex-m", "arch-riscv32", "arch-xtensa", "arch-std", "arch-wasm",);
#[cfg(feature = "_arch")]
#[cfg_attr(feature = "arch-cortex-m", path = "arch/cortex_m.rs")]
#[cfg_attr(feature = "arch-riscv32", path = "arch/riscv32.rs")]
#[cfg_attr(feature = "arch-xtensa", path = "arch/xtensa.rs")]
#[cfg_attr(feature = "arch-std", path = "arch/std.rs")]
#[cfg_attr(feature = "arch-wasm", path = "arch/wasm.rs")]
mod arch;
#[cfg(feature = "_arch")]
pub use arch::*;
pub mod raw;
mod spawner;
pub use spawner::*;
/// Implementation details for embassy macros.
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)] #[doc(hidden)]
/// Implementation details for embassy macros. DO NOT USE. pub mod _export {
pub mod export {
#[cfg(feature = "rtos-trace")] #[cfg(feature = "rtos-trace")]
pub use rtos_trace::trace; pub use rtos_trace::trace;
pub use static_cell::StaticCell;
/// Expands the given block of code when `embassy-executor` is compiled with /// Expands the given block of code when `embassy-executor` is compiled with
/// the `rtos-trace-interrupt` feature. /// the `rtos-trace-interrupt` feature.
@ -70,14 +66,3 @@ pub mod export {
($($tt:tt)*) => {}; ($($tt:tt)*) => {};
} }
} }
pub mod raw;
mod spawner;
pub use spawner::*;
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)]
pub mod _export {
pub use static_cell::StaticCell;
}

View File

@ -11,6 +11,7 @@ mod run_queue;
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
mod timer_queue; mod timer_queue;
pub(crate) mod util; pub(crate) mod util;
#[cfg_attr(feature = "turbowakers", path = "waker_turbo.rs")]
mod waker; mod waker;
use core::future::Future; use core::future::Future;
@ -18,11 +19,9 @@ use core::marker::PhantomData;
use core::mem; use core::mem;
use core::pin::Pin; use core::pin::Pin;
use core::ptr::NonNull; use core::ptr::NonNull;
use core::sync::atomic::AtomicPtr;
use core::task::{Context, Poll}; use core::task::{Context, Poll};
use atomic_polyfill::{AtomicU32, Ordering}; use atomic_polyfill::{AtomicU32, Ordering};
use critical_section::CriticalSection;
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
use embassy_time::driver::{self, AlarmHandle}; use embassy_time::driver::{self, AlarmHandle};
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
@ -289,10 +288,60 @@ impl<F: Future + 'static, const N: usize> TaskPool<F, N> {
} }
} }
#[derive(Clone, Copy)]
pub(crate) enum PenderInner {
#[cfg(feature = "executor-thread")]
Thread(crate::arch::ThreadPender),
#[cfg(feature = "executor-interrupt")]
Interrupt(crate::arch::InterruptPender),
#[cfg(feature = "pender-callback")]
Callback { func: fn(*mut ()), context: *mut () },
}
unsafe impl Send for PenderInner {}
unsafe impl Sync for PenderInner {}
/// Platform/architecture-specific action executed when an executor has pending work.
///
/// When a task within an executor is woken, the `Pender` is called. This does a
/// platform/architecture-specific action to signal there is pending work in the executor.
/// When this happens, you must arrange for [`Executor::poll`] to be called.
///
/// You can think of it as a waker, but for the whole executor.
pub struct Pender(pub(crate) PenderInner);
impl Pender {
/// Create a `Pender` that will call an arbitrary function pointer.
///
/// # Arguments
///
/// - `func`: The function pointer to call.
/// - `context`: Opaque context pointer, that will be passed to the function pointer.
#[cfg(feature = "pender-callback")]
pub fn new_from_callback(func: fn(*mut ()), context: *mut ()) -> Self {
Self(PenderInner::Callback {
func,
context: context.into(),
})
}
}
impl Pender {
pub(crate) fn pend(&self) {
match self.0 {
#[cfg(feature = "executor-thread")]
PenderInner::Thread(x) => x.pend(),
#[cfg(feature = "executor-interrupt")]
PenderInner::Interrupt(x) => x.pend(),
#[cfg(feature = "pender-callback")]
PenderInner::Callback { func, context } => func(context),
}
}
}
pub(crate) struct SyncExecutor { pub(crate) struct SyncExecutor {
run_queue: RunQueue, run_queue: RunQueue,
signal_fn: fn(*mut ()), pender: Pender,
signal_ctx: AtomicPtr<()>,
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
pub(crate) timer_queue: timer_queue::TimerQueue, pub(crate) timer_queue: timer_queue::TimerQueue,
@ -301,16 +350,13 @@ pub(crate) struct SyncExecutor {
} }
impl SyncExecutor { impl SyncExecutor {
pub(crate) fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self { pub(crate) fn new(pender: Pender) -> Self {
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
let alarm = unsafe { unwrap!(driver::allocate_alarm()) }; let alarm = unsafe { unwrap!(driver::allocate_alarm()) };
#[cfg(feature = "integrated-timers")]
driver::set_alarm_callback(alarm, signal_fn, signal_ctx);
Self { Self {
run_queue: RunQueue::new(), run_queue: RunQueue::new(),
signal_fn, pender,
signal_ctx: AtomicPtr::new(signal_ctx),
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
timer_queue: timer_queue::TimerQueue::new(), timer_queue: timer_queue::TimerQueue::new(),
@ -326,30 +372,37 @@ impl SyncExecutor {
/// - `task` must be set up to run in this executor. /// - `task` must be set up to run in this executor.
/// - `task` must NOT be already enqueued (in this executor or another one). /// - `task` must NOT be already enqueued (in this executor or another one).
#[inline(always)] #[inline(always)]
unsafe fn enqueue(&self, cs: CriticalSection, task: TaskRef) { unsafe fn enqueue(&self, task: TaskRef) {
#[cfg(feature = "rtos-trace")] #[cfg(feature = "rtos-trace")]
trace::task_ready_begin(task.as_ptr() as u32); trace::task_ready_begin(task.as_ptr() as u32);
if self.run_queue.enqueue(cs, task) { if self.run_queue.enqueue(task) {
(self.signal_fn)(self.signal_ctx.load(Ordering::Relaxed)) self.pender.pend();
} }
} }
#[cfg(feature = "integrated-timers")]
fn alarm_callback(ctx: *mut ()) {
let this: &Self = unsafe { &*(ctx as *const Self) };
this.pender.pend();
}
pub(super) unsafe fn spawn(&'static self, task: TaskRef) { pub(super) unsafe fn spawn(&'static self, task: TaskRef) {
task.header().executor.set(Some(self)); task.header().executor.set(Some(self));
#[cfg(feature = "rtos-trace")] #[cfg(feature = "rtos-trace")]
trace::task_new(task.as_ptr() as u32); trace::task_new(task.as_ptr() as u32);
critical_section::with(|cs| { self.enqueue(task);
self.enqueue(cs, task);
})
} }
/// # Safety /// # Safety
/// ///
/// Same as [`Executor::poll`], plus you must only call this on the thread this executor was created. /// Same as [`Executor::poll`], plus you must only call this on the thread this executor was created.
pub(crate) unsafe fn poll(&'static self) { pub(crate) unsafe fn poll(&'static self) {
#[cfg(feature = "integrated-timers")]
driver::set_alarm_callback(self.alarm, Self::alarm_callback, self as *const _ as *mut ());
#[allow(clippy::never_loop)] #[allow(clippy::never_loop)]
loop { loop {
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]
@ -416,14 +469,14 @@ impl SyncExecutor {
/// ///
/// - To get the executor to do work, call `poll()`. This will poll all queued tasks (all tasks /// - To get the executor to do work, call `poll()`. This will poll all queued tasks (all tasks
/// that "want to run"). /// that "want to run").
/// - You must supply a `signal_fn`. The executor will call it to notify you it has work /// - You must supply a [`Pender`]. The executor will call it to notify you it has work
/// to do. You must arrange for `poll()` to be called as soon as possible. /// to do. You must arrange for `poll()` to be called as soon as possible.
/// ///
/// `signal_fn` can be called from *any* context: any thread, any interrupt priority /// The [`Pender`] can be called from *any* context: any thread, any interrupt priority
/// level, etc. It may be called synchronously from any `Executor` method call as well. /// level, etc. It may be called synchronously from any `Executor` method call as well.
/// You must deal with this correctly. /// You must deal with this correctly.
/// ///
/// In particular, you must NOT call `poll` directly from `signal_fn`, as this violates /// In particular, you must NOT call `poll` directly from the pender callback, as this violates
/// the requirement for `poll` to not be called reentrantly. /// the requirement for `poll` to not be called reentrantly.
#[repr(transparent)] #[repr(transparent)]
pub struct Executor { pub struct Executor {
@ -436,15 +489,15 @@ impl Executor {
pub(crate) unsafe fn wrap(inner: &SyncExecutor) -> &Self { pub(crate) unsafe fn wrap(inner: &SyncExecutor) -> &Self {
mem::transmute(inner) mem::transmute(inner)
} }
/// Create a new executor. /// Create a new executor.
/// ///
/// When the executor has work to do, it will call `signal_fn` with /// When the executor has work to do, it will call the [`Pender`].
/// `signal_ctx` as argument.
/// ///
/// See [`Executor`] docs for details on `signal_fn`. /// See [`Executor`] docs for details on `Pender`.
pub fn new(signal_fn: fn(*mut ()), signal_ctx: *mut ()) -> Self { pub fn new(pender: Pender) -> Self {
Self { Self {
inner: SyncExecutor::new(signal_fn, signal_ctx), inner: SyncExecutor::new(pender),
_not_sync: PhantomData, _not_sync: PhantomData,
} }
} }
@ -467,16 +520,16 @@ impl Executor {
/// This loops over all tasks that are queued to be polled (i.e. they're /// This loops over all tasks that are queued to be polled (i.e. they're
/// freshly spawned or they've been woken). Other tasks are not polled. /// freshly spawned or they've been woken). Other tasks are not polled.
/// ///
/// You must call `poll` after receiving a call to `signal_fn`. It is OK /// You must call `poll` after receiving a call to the [`Pender`]. It is OK
/// to call `poll` even when not requested by `signal_fn`, but it wastes /// to call `poll` even when not requested by the `Pender`, but it wastes
/// energy. /// energy.
/// ///
/// # Safety /// # Safety
/// ///
/// You must NOT call `poll` reentrantly on the same executor. /// You must NOT call `poll` reentrantly on the same executor.
/// ///
/// In particular, note that `poll` may call `signal_fn` synchronously. Therefore, you /// In particular, note that `poll` may call the `Pender` synchronously. Therefore, you
/// must NOT directly call `poll()` from your `signal_fn`. Instead, `signal_fn` has to /// must NOT directly call `poll()` from the `Pender` callback. Instead, the callback has to
/// somehow schedule for `poll()` to be called later, at a time you know for sure there's /// somehow schedule for `poll()` to be called later, at a time you know for sure there's
/// no `poll()` already running. /// no `poll()` already running.
pub unsafe fn poll(&'static self) { pub unsafe fn poll(&'static self) {
@ -496,24 +549,25 @@ impl Executor {
/// ///
/// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`]. /// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`].
pub fn wake_task(task: TaskRef) { pub fn wake_task(task: TaskRef) {
critical_section::with(|cs| {
let header = task.header(); let header = task.header();
let state = header.state.load(Ordering::Relaxed);
let res = header.state.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |state| {
// If already scheduled, or if not started, // If already scheduled, or if not started,
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) { if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
return; None
} } else {
// Mark it as scheduled // Mark it as scheduled
header.state.store(state | STATE_RUN_QUEUED, Ordering::Relaxed); Some(state | STATE_RUN_QUEUED)
}
});
if res.is_ok() {
// We have just marked the task as scheduled, so enqueue it. // We have just marked the task as scheduled, so enqueue it.
unsafe { unsafe {
let executor = header.executor.get().unwrap_unchecked(); let executor = header.executor.get().unwrap_unchecked();
executor.enqueue(cs, task); executor.enqueue(task);
}
} }
})
} }
#[cfg(feature = "integrated-timers")] #[cfg(feature = "integrated-timers")]

View File

@ -2,7 +2,6 @@ use core::ptr;
use core::ptr::NonNull; use core::ptr::NonNull;
use atomic_polyfill::{AtomicPtr, Ordering}; use atomic_polyfill::{AtomicPtr, Ordering};
use critical_section::CriticalSection;
use super::{TaskHeader, TaskRef}; use super::{TaskHeader, TaskRef};
@ -46,11 +45,18 @@ impl RunQueue {
/// ///
/// `item` must NOT be already enqueued in any queue. /// `item` must NOT be already enqueued in any queue.
#[inline(always)] #[inline(always)]
pub(crate) unsafe fn enqueue(&self, _cs: CriticalSection, task: TaskRef) -> bool { pub(crate) unsafe fn enqueue(&self, task: TaskRef) -> bool {
let prev = self.head.load(Ordering::Relaxed); let mut was_empty = false;
self.head
.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |prev| {
was_empty = prev.is_null();
task.header().run_queue_item.next.store(prev, Ordering::Relaxed); task.header().run_queue_item.next.store(prev, Ordering::Relaxed);
self.head.store(task.as_ptr() as _, Ordering::Relaxed); Some(task.as_ptr() as *mut _)
prev.is_null() })
.ok();
was_empty
} }
/// Empty the queue, then call `on_task` for each task that was in the queue. /// Empty the queue, then call `on_task` for each task that was in the queue.

View File

@ -0,0 +1,34 @@
use core::ptr::NonNull;
use core::task::Waker;
use super::{wake_task, TaskHeader, TaskRef};
pub(crate) unsafe fn from_task(p: TaskRef) -> Waker {
Waker::from_turbo_ptr(NonNull::new_unchecked(p.as_ptr() as _))
}
/// Get a task pointer from a waker.
///
/// This can be used as an optimization in wait queues to store task pointers
/// (1 word) instead of full Wakers (2 words). This saves a bit of RAM and helps
/// avoid dynamic dispatch.
///
/// You can use the returned task pointer to wake the task with [`wake_task`](super::wake_task).
///
/// # Panics
///
/// Panics if the waker is not created by the Embassy executor.
pub fn task_from_waker(waker: &Waker) -> TaskRef {
let ptr = waker.as_turbo_ptr().as_ptr();
// safety: our wakers are always created with `TaskRef::as_ptr`
unsafe { TaskRef::from_ptr(ptr as *const TaskHeader) }
}
#[inline(never)]
#[no_mangle]
fn _turbo_wake(ptr: NonNull<()>) {
// safety: our wakers are always created with `TaskRef::as_ptr`
let task = unsafe { TaskRef::from_ptr(ptr.as_ptr() as *const TaskHeader) };
wake_task(task)
}

View File

@ -10,8 +10,8 @@ src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-lora/
features = ["time", "defmt"] features = ["time", "defmt"]
flavors = [ flavors = [
{ name = "sx126x", target = "thumbv7em-none-eabihf", features = ["sx126x"] }, { name = "sx126x", target = "thumbv7em-none-eabihf", features = ["sx126x"] },
{ name = "sx127x", target = "thumbv7em-none-eabihf", features = ["sx127x", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] }, { name = "sx127x", target = "thumbv7em-none-eabihf", features = ["sx127x"] },
{ name = "stm32wl", target = "thumbv7em-none-eabihf", features = ["stm32wl", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] }, { name = "stm32wl", target = "thumbv7em-none-eabihf", features = ["stm32wl", "embassy-stm32?/stm32wl55jc-cm4", "embassy-stm32?/time-driver-any"] },
] ]
[lib] [lib]
@ -19,7 +19,7 @@ flavors = [
[features] [features]
sx126x = [] sx126x = []
sx127x = [] sx127x = []
stm32wl = ["embassy-stm32", "embassy-stm32/subghz"] stm32wl = ["dep:embassy-stm32"]
time = [] time = []
defmt = ["dep:defmt", "lorawan/defmt", "lorawan-device/defmt"] defmt = ["dep:defmt", "lorawan/defmt", "lorawan-device/defmt"]
@ -31,8 +31,8 @@ log = { version = "0.4.14", optional = true }
embassy-time = { version = "0.1.0", path = "../embassy-time" } embassy-time = { version = "0.1.0", path = "../embassy-time" }
embassy-sync = { version = "0.1.0", path = "../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../embassy-sync" }
embassy-stm32 = { version = "0.1.0", path = "../embassy-stm32", default-features = false, optional = true } embassy-stm32 = { version = "0.1.0", path = "../embassy-stm32", default-features = false, optional = true }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9" } embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10" }
embedded-hal-async = { version = "=0.2.0-alpha.0" } embedded-hal-async = { version = "=0.2.0-alpha.1" }
embassy-hal-common = { version = "0.1.0", path = "../embassy-hal-common", default-features = false } embassy-hal-common = { version = "0.1.0", path = "../embassy-hal-common", default-features = false }
futures = { version = "0.3.17", default-features = false, features = [ "async-await" ] } futures = { version = "0.3.17", default-features = false, features = [ "async-await" ] }
embedded-hal = { version = "0.2", features = ["unproven"] } embedded-hal = { version = "0.2", features = ["unproven"] }

View File

@ -10,12 +10,12 @@ pub fn run(name: syn::Ident) -> Result<TokenStream, TokenStream> {
let (isr_enter, isr_exit) = ( let (isr_enter, isr_exit) = (
quote! { quote! {
::embassy_executor::rtos_trace_interrupt! { ::embassy_executor::rtos_trace_interrupt! {
::embassy_executor::export::trace::isr_enter(); ::embassy_executor::_export::trace::isr_enter();
} }
}, },
quote! { quote! {
::embassy_executor::rtos_trace_interrupt! { ::embassy_executor::rtos_trace_interrupt! {
::embassy_executor::export::trace::isr_exit(); ::embassy_executor::_export::trace::isr_exit();
} }
}, },
); );

View File

@ -87,8 +87,8 @@ embassy-embedded-hal = {version = "0.1.0", path = "../embassy-embedded-hal" }
embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver", optional=true } embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver", optional=true }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] } embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9", optional = true} embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10", optional = true}
embedded-hal-async = { version = "=0.2.0-alpha.0", optional = true} embedded-hal-async = { version = "=0.2.0-alpha.1", optional = true}
embedded-io = { version = "0.4.0", features = ["async"], optional = true } embedded-io = { version = "0.4.0", features = ["async"], optional = true }
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }

View File

@ -846,20 +846,6 @@ mod eh1 {
self.blocking_write(address, buffer) self.blocking_write(address, buffer)
} }
fn write_iter<B>(&mut self, _address: u8, _bytes: B) -> Result<(), Self::Error>
where
B: IntoIterator<Item = u8>,
{
todo!();
}
fn write_iter_read<B>(&mut self, _address: u8, _bytes: B, _buffer: &mut [u8]) -> Result<(), Self::Error>
where
B: IntoIterator<Item = u8>,
{
todo!();
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> { fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer) self.blocking_write_read(address, wr_buffer, rd_buffer)
} }
@ -871,13 +857,6 @@ mod eh1 {
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
todo!(); todo!();
} }
fn transaction_iter<'a, O>(&mut self, _address: u8, _operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
{
todo!();
}
} }
} }
@ -885,28 +864,22 @@ mod eh1 {
mod eha { mod eha {
use super::*; use super::*;
impl<'d, T: Instance> embedded_hal_async::i2c::I2c for Twim<'d, T> { impl<'d, T: Instance> embedded_hal_async::i2c::I2c for Twim<'d, T> {
async fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Result<(), Error> { async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, buffer).await self.read(address, read).await
} }
async fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Result<(), Error> { async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, bytes).await self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
} }
async fn write_read<'a>( async fn transaction(
&'a mut self, &mut self,
address: u8, address: u8,
wr_buffer: &'a [u8], operations: &mut [embedded_hal_1::i2c::Operation<'_>],
rd_buffer: &'a mut [u8], ) -> Result<(), Self::Error> {
) -> Result<(), Error> {
self.write_read(address, wr_buffer, rd_buffer).await
}
async fn transaction<'a, 'b>(
&'a mut self,
address: u8,
operations: &'a mut [embedded_hal_async::i2c::Operation<'b>],
) -> Result<(), Error> {
let _ = address; let _ = address;
let _ = operations; let _ = operations;
todo!() todo!()

View File

@ -65,9 +65,9 @@ rp2040-pac2 = { git = "https://github.com/embassy-rs/rp2040-pac2", rev="017e3c90
#rp2040-pac2 = { path = "../../rp2040-pac2", features = ["rt"] } #rp2040-pac2 = { path = "../../rp2040-pac2", features = ["rt"] }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] } embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9", optional = true} embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10", optional = true}
embedded-hal-async = { version = "=0.2.0-alpha.0", optional = true} embedded-hal-async = { version = "=0.2.0-alpha.1", optional = true}
embedded-hal-nb = { version = "=1.0.0-alpha.1", optional = true} embedded-hal-nb = { version = "=1.0.0-alpha.2", optional = true}
paste = "1.0" paste = "1.0"
pio-proc = {version= "0.2", optional = true} pio-proc = {version= "0.2", optional = true}

View File

@ -437,6 +437,37 @@ impl<'d, T: Pin> OutputOpenDrain<'d, T> {
pub fn is_low(&self) -> bool { pub fn is_low(&self) -> bool {
self.pin.is_low() self.pin.is_low()
} }
/// Returns current pin level
#[inline]
pub fn get_level(&self) -> Level {
self.is_high().into()
}
#[inline]
pub async fn wait_for_high(&mut self) {
self.pin.wait_for_high().await;
}
#[inline]
pub async fn wait_for_low(&mut self) {
self.pin.wait_for_low().await;
}
#[inline]
pub async fn wait_for_rising_edge(&mut self) {
self.pin.wait_for_rising_edge().await;
}
#[inline]
pub async fn wait_for_falling_edge(&mut self) {
self.pin.wait_for_falling_edge().await;
}
#[inline]
pub async fn wait_for_any_edge(&mut self) {
self.pin.wait_for_any_edge().await;
}
} }
/// GPIO flexible pin. /// GPIO flexible pin.
@ -1117,4 +1148,32 @@ mod eh1 {
Ok(()) Ok(())
} }
} }
#[cfg(feature = "nightly")]
impl<'d, T: Pin> embedded_hal_async::digital::Wait for OutputOpenDrain<'d, T> {
async fn wait_for_high(&mut self) -> Result<(), Self::Error> {
self.wait_for_high().await;
Ok(())
}
async fn wait_for_low(&mut self) -> Result<(), Self::Error> {
self.wait_for_low().await;
Ok(())
}
async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_rising_edge().await;
Ok(())
}
async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_falling_edge().await;
Ok(())
}
async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> {
self.wait_for_any_edge().await;
Ok(())
}
}
} }

View File

@ -490,14 +490,14 @@ impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
} }
} }
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { fn read_blocking_internal(&mut self, read: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() { if read.is_empty() {
return Err(Error::InvalidReadBufferLength); return Err(Error::InvalidReadBufferLength);
} }
let p = T::regs(); let p = T::regs();
let lastindex = buffer.len() - 1; let lastindex = read.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() { for (i, byte) in read.iter_mut().enumerate() {
let first = i == 0; let first = i == 0;
let last = i == lastindex; let last = i == lastindex;
@ -524,15 +524,15 @@ impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
Ok(()) Ok(())
} }
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> { fn write_blocking_internal(&mut self, write: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() { if write.is_empty() {
return Err(Error::InvalidWriteBufferLength); return Err(Error::InvalidWriteBufferLength);
} }
let p = T::regs(); let p = T::regs();
for (i, byte) in bytes.iter().enumerate() { for (i, byte) in write.iter().enumerate() {
let last = i == bytes.len() - 1; let last = i == write.len() - 1;
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
@ -572,21 +572,21 @@ impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
// Blocking public API // Blocking public API
// ========================= // =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?; Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true) self.read_blocking_internal(read, true, true)
// Automatic Stop // Automatic Stop
} }
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?; Self::setup(address.into())?;
self.write_blocking_internal(bytes, true) self.write_blocking_internal(write, true)
} }
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?; Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?; self.write_blocking_internal(write, false)?;
self.read_blocking_internal(buffer, true, true) self.read_blocking_internal(read, true, true)
// Automatic Stop // Automatic Stop
} }
} }
@ -644,48 +644,22 @@ mod eh1 {
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> { impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer) self.blocking_read(address, read)
} }
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer) self.blocking_write(address, write)
} }
fn write_iter<B>(&mut self, address: u8, bytes: B) -> Result<(), Self::Error> fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
where self.blocking_write_read(address, write, read)
B: IntoIterator<Item = u8>,
{
let mut peekable = bytes.into_iter().peekable();
Self::setup(address.into())?;
while let Some(tx) = peekable.next() {
self.write_blocking_internal(&[tx], peekable.peek().is_none())?;
}
Ok(())
} }
fn write_iter_read<B>(&mut self, address: u8, bytes: B, buffer: &mut [u8]) -> Result<(), Self::Error> fn transaction(
where
B: IntoIterator<Item = u8>,
{
let peekable = bytes.into_iter().peekable();
Self::setup(address.into())?;
for tx in peekable {
self.write_blocking_internal(&[tx], false)?
}
self.read_blocking_internal(buffer, true, true)
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self, &mut self,
address: u8, address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'a>], operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
Self::setup(address.into())?; Self::setup(address.into())?;
for i in 0..operations.len() { for i in 0..operations.len() {
@ -697,22 +671,6 @@ mod eh1 {
} }
Ok(()) Ok(())
} }
fn transaction_iter<'a, O>(&mut self, address: u8, operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
{
Self::setup(address.into())?;
let mut peekable = operations.into_iter().peekable();
while let Some(operation) = peekable.next() {
let last = peekable.peek().is_none();
match operation {
embedded_hal_1::i2c::Operation::Read(buf) => self.read_blocking_internal(buf, false, last)?,
embedded_hal_1::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
} }
} }
#[cfg(all(feature = "unstable-traits", feature = "nightly"))] #[cfg(all(feature = "unstable-traits", feature = "nightly"))]
@ -727,36 +685,29 @@ mod nightly {
A: AddressMode + Into<u16> + 'static, A: AddressMode + Into<u16> + 'static,
T: Instance + 'd, T: Instance + 'd,
{ {
async fn read<'a>(&'a mut self, address: A, read: &'a mut [u8]) -> Result<(), Self::Error> { async fn read(&mut self, address: A, read: &mut [u8]) -> Result<(), Self::Error> {
let addr: u16 = address.into(); let addr: u16 = address.into();
Self::setup(addr)?; Self::setup(addr)?;
self.read_async_internal(read, false, true).await self.read_async_internal(read, false, true).await
} }
async fn write<'a>(&'a mut self, address: A, write: &'a [u8]) -> Result<(), Self::Error> { async fn write(&mut self, address: A, write: &[u8]) -> Result<(), Self::Error> {
let addr: u16 = address.into(); let addr: u16 = address.into();
Self::setup(addr)?; Self::setup(addr)?;
self.write_async_internal(write.iter().copied(), true).await self.write_async_internal(write.iter().copied(), true).await
} }
async fn write_read<'a>(
&'a mut self, async fn write_read(&mut self, address: A, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
address: A,
write: &'a [u8],
read: &'a mut [u8],
) -> Result<(), Self::Error> {
let addr: u16 = address.into(); let addr: u16 = address.into();
Self::setup(addr)?; Self::setup(addr)?;
self.write_async_internal(write.iter().cloned(), false).await?; self.write_async_internal(write.iter().cloned(), false).await?;
self.read_async_internal(read, false, true).await self.read_async_internal(read, false, true).await
} }
async fn transaction<'a, 'b>(
&'a mut self, async fn transaction(&mut self, address: A, operations: &mut [Operation<'_>]) -> Result<(), Self::Error> {
address: A,
operations: &'a mut [Operation<'b>],
) -> Result<(), Self::Error> {
let addr: u16 = address.into(); let addr: u16 = address.into();
let mut iterator = operations.iter_mut(); let mut iterator = operations.iter_mut();

View File

@ -19,6 +19,7 @@ pub enum Error {
} }
#[non_exhaustive] #[non_exhaustive]
#[derive(Clone)]
pub struct Config { pub struct Config {
pub frequency: u32, pub frequency: u32,
pub phase: Phase, pub phase: Phase,

View File

@ -175,6 +175,10 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a { fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| { poll_fn(move |cx| {
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
let state = T::state(); let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() }; let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| { let n = rx_reader.pop(|data| {
@ -202,6 +206,10 @@ impl<'d, T: Instance> BufferedUartRx<'d, T> {
} }
pub fn blocking_read(&mut self, buf: &mut [u8]) -> Result<usize, Error> { pub fn blocking_read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
if buf.is_empty() {
return Ok(0);
}
loop { loop {
let state = T::state(); let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() }; let mut rx_reader = unsafe { state.rx_buf.reader() };
@ -293,6 +301,10 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a { fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| { poll_fn(move |cx| {
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
let state = T::state(); let state = T::state();
let mut tx_writer = unsafe { state.tx_buf.writer() }; let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| { let n = tx_writer.push(|data| {
@ -327,6 +339,10 @@ impl<'d, T: Instance> BufferedUartTx<'d, T> {
} }
pub fn blocking_write(&mut self, buf: &[u8]) -> Result<usize, Error> { pub fn blocking_write(&mut self, buf: &[u8]) -> Result<usize, Error> {
if buf.is_empty() {
return Ok(0);
}
loop { loop {
let state = T::state(); let state = T::state();
let mut tx_writer = unsafe { state.tx_buf.writer() }; let mut tx_writer = unsafe { state.tx_buf.writer() };

View File

@ -405,10 +405,6 @@ impl<'d, T: Instance + 'd, M: Mode> Uart<'d, T, M> {
Parity::ParityEven => (true, true), Parity::ParityEven => (true, true),
}; };
// PL011 needs a (dummy) line control register write to latch in the
// divisors. We don't want to actually change LCR contents here.
r.uartlcr_h().modify(|_| {});
r.uartlcr_h().write(|w| { r.uartlcr_h().write(|w| {
w.set_wlen(config.data_bits.bits()); w.set_wlen(config.data_bits.bits());
w.set_stp2(config.stop_bits == StopBits::STOP2); w.set_stp2(config.stop_bits == StopBits::STOP2);
@ -458,6 +454,10 @@ impl<'d, T: Instance + 'd, M: Mode> Uart<'d, T, M> {
// Load PL011's baud divisor registers // Load PL011's baud divisor registers
r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd)); r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd));
r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd)); r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd));
// PL011 needs a (dummy) line control register write to latch in the
// divisors. We don't want to actually change LCR contents here.
r.uartlcr_h().modify(|_| {});
} }
} }
} }

View File

@ -8,10 +8,7 @@ license = "MIT OR Apache-2.0"
src_base = "https://github.com/embassy-rs/embassy/blob/embassy-stm32-v$VERSION/embassy-stm32/src/" src_base = "https://github.com/embassy-rs/embassy/blob/embassy-stm32-v$VERSION/embassy-stm32/src/"
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-stm32/src/" src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-stm32/src/"
# TODO: sdmmc features = ["nightly", "defmt", "unstable-pac", "unstable-traits", "exti", "time-driver-any", "time"]
# TODO: net
# TODO: subghz
features = ["nightly", "defmt", "unstable-pac", "unstable-traits", "exti", "time-driver-any"]
flavors = [ flavors = [
{ regex_feature = "stm32f0.*", target = "thumbv6m-none-eabi" }, { regex_feature = "stm32f0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32f1.*", target = "thumbv7m-none-eabi" }, { regex_feature = "stm32f1.*", target = "thumbv7m-none-eabi" },
@ -22,6 +19,7 @@ flavors = [
{ regex_feature = "stm32c0.*", target = "thumbv6m-none-eabi" }, { regex_feature = "stm32c0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32g0.*", target = "thumbv6m-none-eabi" }, { regex_feature = "stm32g0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32g4.*", target = "thumbv7em-none-eabi" }, { regex_feature = "stm32g4.*", target = "thumbv7em-none-eabi" },
{ regex_feature = "stm32h5.*", target = "thumbv8m.main-none-eabihf" },
{ regex_feature = "stm32h7.*", target = "thumbv7em-none-eabi" }, { regex_feature = "stm32h7.*", target = "thumbv7em-none-eabi" },
{ regex_feature = "stm32l0.*", target = "thumbv6m-none-eabi" }, { regex_feature = "stm32l0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32l1.*", target = "thumbv7m-none-eabi" }, { regex_feature = "stm32l1.*", target = "thumbv7m-none-eabi" },
@ -44,9 +42,9 @@ embassy-net-driver = { version = "0.1.0", path = "../embassy-net-driver" }
embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver", optional = true } embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver", optional = true }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] } embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9", optional = true} embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10", optional = true}
embedded-hal-async = { version = "=0.2.0-alpha.0", optional = true} embedded-hal-async = { version = "=0.2.0-alpha.1", optional = true}
embedded-hal-nb = { version = "=1.0.0-alpha.1", optional = true} embedded-hal-nb = { version = "=1.0.0-alpha.2", optional = true}
embedded-storage = "0.3.0" embedded-storage = "0.3.0"
@ -60,7 +58,7 @@ sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "46d1b1c2ff13e31e282ec1e352421721694f126a", optional = true } embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "46d1b1c2ff13e31e282ec1e352421721694f126a", optional = true }
critical-section = "1.1" critical-section = "1.1"
atomic-polyfill = "1.0.1" atomic-polyfill = "1.0.1"
stm32-metapac = { version = "2", features = ["rt"] } stm32-metapac = "5"
vcell = "0.1.3" vcell = "0.1.3"
bxcan = "0.7.0" bxcan = "0.7.0"
nb = "1.0.0" nb = "1.0.0"
@ -69,15 +67,18 @@ seq-macro = "0.3.0"
cfg-if = "1.0.0" cfg-if = "1.0.0"
embedded-io = { version = "0.4.0", features = ["async"], optional = true } embedded-io = { version = "0.4.0", features = ["async"], optional = true }
[dev-dependencies]
critical-section = { version = "1.1", features = ["std"] }
[build-dependencies] [build-dependencies]
proc-macro2 = "1.0.36" proc-macro2 = "1.0.36"
quote = "1.0.15" quote = "1.0.15"
stm32-metapac = { version = "2", default-features = false, features = ["metadata"]} stm32-metapac = { version = "5", default-features = false, features = ["metadata"]}
[features] [features]
default = ["stm32-metapac/rt"]
defmt = ["dep:defmt", "bxcan/unstable-defmt", "embassy-sync/defmt", "embassy-executor/defmt", "embassy-embedded-hal/defmt", "embassy-hal-common/defmt", "embedded-io?/defmt", "embassy-usb-driver?/defmt", "embassy-net-driver/defmt"] defmt = ["dep:defmt", "bxcan/unstable-defmt", "embassy-sync/defmt", "embassy-executor/defmt", "embassy-embedded-hal/defmt", "embassy-hal-common/defmt", "embedded-io?/defmt", "embassy-usb-driver?/defmt", "embassy-net-driver/defmt"]
memory-x = ["stm32-metapac/memory-x"] memory-x = ["stm32-metapac/memory-x"]
subghz = []
exti = [] exti = []
# Enables additional driver features that depend on embassy-time # Enables additional driver features that depend on embassy-time
@ -830,6 +831,37 @@ stm32g4a1ke = [ "stm32-metapac/stm32g4a1ke" ]
stm32g4a1me = [ "stm32-metapac/stm32g4a1me" ] stm32g4a1me = [ "stm32-metapac/stm32g4a1me" ]
stm32g4a1re = [ "stm32-metapac/stm32g4a1re" ] stm32g4a1re = [ "stm32-metapac/stm32g4a1re" ]
stm32g4a1ve = [ "stm32-metapac/stm32g4a1ve" ] stm32g4a1ve = [ "stm32-metapac/stm32g4a1ve" ]
stm32h503cb = [ "stm32-metapac/stm32h503cb" ]
stm32h503eb = [ "stm32-metapac/stm32h503eb" ]
stm32h503kb = [ "stm32-metapac/stm32h503kb" ]
stm32h503rb = [ "stm32-metapac/stm32h503rb" ]
stm32h562ag = [ "stm32-metapac/stm32h562ag" ]
stm32h562ai = [ "stm32-metapac/stm32h562ai" ]
stm32h562ig = [ "stm32-metapac/stm32h562ig" ]
stm32h562ii = [ "stm32-metapac/stm32h562ii" ]
stm32h562rg = [ "stm32-metapac/stm32h562rg" ]
stm32h562ri = [ "stm32-metapac/stm32h562ri" ]
stm32h562vg = [ "stm32-metapac/stm32h562vg" ]
stm32h562vi = [ "stm32-metapac/stm32h562vi" ]
stm32h562zg = [ "stm32-metapac/stm32h562zg" ]
stm32h562zi = [ "stm32-metapac/stm32h562zi" ]
stm32h563ag = [ "stm32-metapac/stm32h563ag" ]
stm32h563ai = [ "stm32-metapac/stm32h563ai" ]
stm32h563ig = [ "stm32-metapac/stm32h563ig" ]
stm32h563ii = [ "stm32-metapac/stm32h563ii" ]
stm32h563mi = [ "stm32-metapac/stm32h563mi" ]
stm32h563rg = [ "stm32-metapac/stm32h563rg" ]
stm32h563ri = [ "stm32-metapac/stm32h563ri" ]
stm32h563vg = [ "stm32-metapac/stm32h563vg" ]
stm32h563vi = [ "stm32-metapac/stm32h563vi" ]
stm32h563zg = [ "stm32-metapac/stm32h563zg" ]
stm32h563zi = [ "stm32-metapac/stm32h563zi" ]
stm32h573ai = [ "stm32-metapac/stm32h573ai" ]
stm32h573ii = [ "stm32-metapac/stm32h573ii" ]
stm32h573mi = [ "stm32-metapac/stm32h573mi" ]
stm32h573ri = [ "stm32-metapac/stm32h573ri" ]
stm32h573vi = [ "stm32-metapac/stm32h573vi" ]
stm32h573zi = [ "stm32-metapac/stm32h573zi" ]
stm32h723ve = [ "stm32-metapac/stm32h723ve" ] stm32h723ve = [ "stm32-metapac/stm32h723ve" ]
stm32h723vg = [ "stm32-metapac/stm32h723vg" ] stm32h723vg = [ "stm32-metapac/stm32h723vg" ]
stm32h723ze = [ "stm32-metapac/stm32h723ze" ] stm32h723ze = [ "stm32-metapac/stm32h723ze" ]
@ -1312,6 +1344,22 @@ stm32l562qe = [ "stm32-metapac/stm32l562qe" ]
stm32l562re = [ "stm32-metapac/stm32l562re" ] stm32l562re = [ "stm32-metapac/stm32l562re" ]
stm32l562ve = [ "stm32-metapac/stm32l562ve" ] stm32l562ve = [ "stm32-metapac/stm32l562ve" ]
stm32l562ze = [ "stm32-metapac/stm32l562ze" ] stm32l562ze = [ "stm32-metapac/stm32l562ze" ]
stm32u535cb = [ "stm32-metapac/stm32u535cb" ]
stm32u535cc = [ "stm32-metapac/stm32u535cc" ]
stm32u535ce = [ "stm32-metapac/stm32u535ce" ]
stm32u535je = [ "stm32-metapac/stm32u535je" ]
stm32u535nc = [ "stm32-metapac/stm32u535nc" ]
stm32u535ne = [ "stm32-metapac/stm32u535ne" ]
stm32u535rb = [ "stm32-metapac/stm32u535rb" ]
stm32u535rc = [ "stm32-metapac/stm32u535rc" ]
stm32u535re = [ "stm32-metapac/stm32u535re" ]
stm32u535vc = [ "stm32-metapac/stm32u535vc" ]
stm32u535ve = [ "stm32-metapac/stm32u535ve" ]
stm32u545ce = [ "stm32-metapac/stm32u545ce" ]
stm32u545je = [ "stm32-metapac/stm32u545je" ]
stm32u545ne = [ "stm32-metapac/stm32u545ne" ]
stm32u545re = [ "stm32-metapac/stm32u545re" ]
stm32u545ve = [ "stm32-metapac/stm32u545ve" ]
stm32u575ag = [ "stm32-metapac/stm32u575ag" ] stm32u575ag = [ "stm32-metapac/stm32u575ag" ]
stm32u575ai = [ "stm32-metapac/stm32u575ai" ] stm32u575ai = [ "stm32-metapac/stm32u575ai" ]
stm32u575cg = [ "stm32-metapac/stm32u575cg" ] stm32u575cg = [ "stm32-metapac/stm32u575cg" ]
@ -1333,6 +1381,32 @@ stm32u585qi = [ "stm32-metapac/stm32u585qi" ]
stm32u585ri = [ "stm32-metapac/stm32u585ri" ] stm32u585ri = [ "stm32-metapac/stm32u585ri" ]
stm32u585vi = [ "stm32-metapac/stm32u585vi" ] stm32u585vi = [ "stm32-metapac/stm32u585vi" ]
stm32u585zi = [ "stm32-metapac/stm32u585zi" ] stm32u585zi = [ "stm32-metapac/stm32u585zi" ]
stm32u595ai = [ "stm32-metapac/stm32u595ai" ]
stm32u595aj = [ "stm32-metapac/stm32u595aj" ]
stm32u595qi = [ "stm32-metapac/stm32u595qi" ]
stm32u595qj = [ "stm32-metapac/stm32u595qj" ]
stm32u595ri = [ "stm32-metapac/stm32u595ri" ]
stm32u595rj = [ "stm32-metapac/stm32u595rj" ]
stm32u595vi = [ "stm32-metapac/stm32u595vi" ]
stm32u595vj = [ "stm32-metapac/stm32u595vj" ]
stm32u595zi = [ "stm32-metapac/stm32u595zi" ]
stm32u595zj = [ "stm32-metapac/stm32u595zj" ]
stm32u599bj = [ "stm32-metapac/stm32u599bj" ]
stm32u599ni = [ "stm32-metapac/stm32u599ni" ]
stm32u599nj = [ "stm32-metapac/stm32u599nj" ]
stm32u599vi = [ "stm32-metapac/stm32u599vi" ]
stm32u599vj = [ "stm32-metapac/stm32u599vj" ]
stm32u599zi = [ "stm32-metapac/stm32u599zi" ]
stm32u599zj = [ "stm32-metapac/stm32u599zj" ]
stm32u5a5aj = [ "stm32-metapac/stm32u5a5aj" ]
stm32u5a5qj = [ "stm32-metapac/stm32u5a5qj" ]
stm32u5a5rj = [ "stm32-metapac/stm32u5a5rj" ]
stm32u5a5vj = [ "stm32-metapac/stm32u5a5vj" ]
stm32u5a5zj = [ "stm32-metapac/stm32u5a5zj" ]
stm32u5a9bj = [ "stm32-metapac/stm32u5a9bj" ]
stm32u5a9nj = [ "stm32-metapac/stm32u5a9nj" ]
stm32u5a9vj = [ "stm32-metapac/stm32u5a9vj" ]
stm32u5a9zj = [ "stm32-metapac/stm32u5a9zj" ]
stm32wb10cc = [ "stm32-metapac/stm32wb10cc" ] stm32wb10cc = [ "stm32-metapac/stm32wb10cc" ]
stm32wb15cc = [ "stm32-metapac/stm32wb15cc" ] stm32wb15cc = [ "stm32-metapac/stm32wb15cc" ]
stm32wb30ce = [ "stm32-metapac/stm32wb30ce" ] stm32wb30ce = [ "stm32-metapac/stm32wb30ce" ]

View File

@ -3,9 +3,9 @@ use std::fmt::Write as _;
use std::path::PathBuf; use std::path::PathBuf;
use std::{env, fs}; use std::{env, fs};
use proc_macro2::TokenStream; use proc_macro2::{Ident, TokenStream};
use quote::{format_ident, quote}; use quote::{format_ident, quote};
use stm32_metapac::metadata::METADATA; use stm32_metapac::metadata::{MemoryRegionKind, METADATA};
fn main() { fn main() {
let chip_name = match env::vars() let chip_name = match env::vars()
@ -50,10 +50,13 @@ fn main() {
// We *shouldn't* have singletons for these, but the HAL currently requires // We *shouldn't* have singletons for these, but the HAL currently requires
// singletons, for using with RccPeripheral to enable/disable clocks to them. // singletons, for using with RccPeripheral to enable/disable clocks to them.
"rcc" => { "rcc" => {
if r.version.starts_with("h7") { if r.version.starts_with("h5") || r.version.starts_with("h7") || r.version.starts_with("f4") {
singletons.push("MCO1".to_string()); singletons.push("MCO1".to_string());
singletons.push("MCO2".to_string()); singletons.push("MCO2".to_string());
} }
if r.version.starts_with("l4") {
singletons.push("MCO".to_string());
}
singletons.push(p.name.to_string()); singletons.push(p.name.to_string());
} }
//"dbgmcu" => {} //"dbgmcu" => {}
@ -103,6 +106,94 @@ fn main() {
} }
}); });
// ========
// Generate FLASH regions
let mut flash_regions = TokenStream::new();
let flash_memory_regions: Vec<_> = METADATA
.memory
.iter()
.filter(|x| x.kind == MemoryRegionKind::Flash && x.settings.is_some())
.collect();
for region in flash_memory_regions.iter() {
let region_name = format_ident!("{}", get_flash_region_name(region.name));
let bank_variant = format_ident!(
"{}",
if region.name.starts_with("BANK_1") {
"Bank1"
} else if region.name.starts_with("BANK_2") {
"Bank2"
} else if region.name == "OTP" {
"Otp"
} else {
continue;
}
);
let base = region.address;
let size = region.size;
let settings = region.settings.as_ref().unwrap();
let erase_size = settings.erase_size;
let write_size = settings.write_size;
let erase_value = settings.erase_value;
flash_regions.extend(quote! {
pub const #region_name: crate::flash::FlashRegion = crate::flash::FlashRegion {
bank: crate::flash::FlashBank::#bank_variant,
base: #base,
size: #size,
erase_size: #erase_size,
write_size: #write_size,
erase_value: #erase_value,
};
});
let region_type = format_ident!("{}", get_flash_region_type_name(region.name));
flash_regions.extend(quote! {
#[cfg(flash)]
pub struct #region_type<'d>(pub &'static crate::flash::FlashRegion, pub(crate) embassy_hal_common::PeripheralRef<'d, crate::peripherals::FLASH>,);
});
}
let (fields, (inits, region_names)): (Vec<TokenStream>, (Vec<TokenStream>, Vec<Ident>)) = flash_memory_regions
.iter()
.map(|f| {
let region_name = get_flash_region_name(f.name);
let field_name = format_ident!("{}", region_name.to_lowercase());
let field_type = format_ident!("{}", get_flash_region_type_name(f.name));
let field = quote! {
pub #field_name: #field_type<'d>
};
let region_name = format_ident!("{}", region_name);
let init = quote! {
#field_name: #field_type(&#region_name, unsafe { p.clone_unchecked()})
};
(field, (init, region_name))
})
.unzip();
let regions_len = flash_memory_regions.len();
flash_regions.extend(quote! {
#[cfg(flash)]
pub struct FlashLayout<'d> {
#(#fields),*
}
#[cfg(flash)]
impl<'d> FlashLayout<'d> {
pub(crate) fn new(mut p: embassy_hal_common::PeripheralRef<'d, crate::peripherals::FLASH>) -> Self {
Self {
#(#inits),*
}
}
}
pub const FLASH_REGIONS: [&crate::flash::FlashRegion; #regions_len] = [
#(&#region_names),*
];
});
g.extend(quote! { pub mod flash_regions { #flash_regions } });
// ======== // ========
// Generate DMA IRQs. // Generate DMA IRQs.
@ -258,6 +349,7 @@ fn main() {
(("i2c", "SCL"), quote!(crate::i2c::SclPin)), (("i2c", "SCL"), quote!(crate::i2c::SclPin)),
(("rcc", "MCO_1"), quote!(crate::rcc::McoPin)), (("rcc", "MCO_1"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO_2"), quote!(crate::rcc::McoPin)), (("rcc", "MCO_2"), quote!(crate::rcc::McoPin)),
(("rcc", "MCO"), quote!(crate::rcc::McoPin)),
(("dcmi", "D0"), quote!(crate::dcmi::D0Pin)), (("dcmi", "D0"), quote!(crate::dcmi::D0Pin)),
(("dcmi", "D1"), quote!(crate::dcmi::D1Pin)), (("dcmi", "D1"), quote!(crate::dcmi::D1Pin)),
(("dcmi", "D2"), quote!(crate::dcmi::D2Pin)), (("dcmi", "D2"), quote!(crate::dcmi::D2Pin)),
@ -447,13 +539,25 @@ fn main() {
// MCO is special // MCO is special
if pin.signal.starts_with("MCO_") { if pin.signal.starts_with("MCO_") {
// Supported in H7 only for now // Supported in H7 only for now
if regs.version.starts_with("h7") { if regs.version.starts_with("h5")
|| regs.version.starts_with("h7")
|| regs.version.starts_with("f4")
{
peri = format_ident!("{}", pin.signal.replace("_", "")); peri = format_ident!("{}", pin.signal.replace("_", ""));
} else { } else {
continue; continue;
} }
} }
if pin.signal == "MCO" {
// Supported in H7 only for now
if regs.version.starts_with("l4") {
peri = format_ident!("MCO");
} else {
continue;
}
}
g.extend(quote! { g.extend(quote! {
pin_trait_impl!(#tr, #peri, #pin_name, #af); pin_trait_impl!(#tr, #peri, #pin_name, #af);
}) })
@ -565,11 +669,25 @@ fn main() {
// ======== // ========
// Write foreach_foo! macrotables // Write foreach_foo! macrotables
let mut flash_regions_table: Vec<Vec<String>> = Vec::new();
let mut interrupts_table: Vec<Vec<String>> = Vec::new(); let mut interrupts_table: Vec<Vec<String>> = Vec::new();
let mut peripherals_table: Vec<Vec<String>> = Vec::new(); let mut peripherals_table: Vec<Vec<String>> = Vec::new();
let mut pins_table: Vec<Vec<String>> = Vec::new(); let mut pins_table: Vec<Vec<String>> = Vec::new();
let mut dma_channels_table: Vec<Vec<String>> = Vec::new(); let mut dma_channels_table: Vec<Vec<String>> = Vec::new();
for m in METADATA
.memory
.iter()
.filter(|m| m.kind == MemoryRegionKind::Flash && m.settings.is_some())
{
let settings = m.settings.as_ref().unwrap();
let mut row = Vec::new();
row.push(get_flash_region_type_name(m.name));
row.push(settings.write_size.to_string());
row.push(settings.erase_size.to_string());
flash_regions_table.push(row);
}
let gpio_base = METADATA.peripherals.iter().find(|p| p.name == "GPIOA").unwrap().address as u32; let gpio_base = METADATA.peripherals.iter().find(|p| p.name == "GPIOA").unwrap().address as u32;
let gpio_stride = 0x400; let gpio_stride = 0x400;
@ -666,6 +784,7 @@ fn main() {
let mut m = String::new(); let mut m = String::new();
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table); make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table); make_table(&mut m, "foreach_peripheral", &peripherals_table);
make_table(&mut m, "foreach_pin", &pins_table); make_table(&mut m, "foreach_pin", &pins_table);
@ -818,3 +937,19 @@ macro_rules! {} {{
) )
.unwrap(); .unwrap();
} }
fn get_flash_region_name(name: &str) -> String {
let name = name.replace("BANK_", "BANK").replace("REGION_", "REGION");
if name.contains("REGION") {
name
} else {
name + "_REGION"
}
}
fn get_flash_region_type_name(name: &str) -> String {
get_flash_region_name(name)
.replace("BANK", "Bank")
.replace("REGION", "Region")
.replace("_", "")
}

View File

@ -7,21 +7,18 @@
#[cfg_attr(adc_v4, path = "v4.rs")] #[cfg_attr(adc_v4, path = "v4.rs")]
mod _version; mod _version;
#[cfg(not(any(adc_f1, adc_v1)))] #[cfg(not(adc_f1))]
mod resolution; mod resolution;
#[cfg(not(adc_v1))]
mod sample_time; mod sample_time;
#[allow(unused)] #[allow(unused)]
pub use _version::*; pub use _version::*;
#[cfg(not(any(adc_f1, adc_v1)))] #[cfg(not(adc_f1))]
pub use resolution::Resolution; pub use resolution::Resolution;
#[cfg(not(adc_v1))]
pub use sample_time::SampleTime; pub use sample_time::SampleTime;
use crate::peripherals; use crate::peripherals;
#[cfg(not(adc_v1))]
pub struct Adc<'d, T: Instance> { pub struct Adc<'d, T: Instance> {
#[allow(unused)] #[allow(unused)]
adc: crate::PeripheralRef<'d, T>, adc: crate::PeripheralRef<'d, T>,
@ -44,9 +41,9 @@ pub(crate) mod sealed {
} }
} }
#[cfg(not(any(adc_f1, adc_v2, adc_v4)))] #[cfg(not(any(adc_f1, adc_v1, adc_v2, adc_v4)))]
pub trait Instance: sealed::Instance + crate::Peripheral<P = Self> {} pub trait Instance: sealed::Instance + crate::Peripheral<P = Self> {}
#[cfg(any(adc_f1, adc_v2, adc_v4))] #[cfg(any(adc_f1, adc_v1, adc_v2, adc_v4))]
pub trait Instance: sealed::Instance + crate::Peripheral<P = Self> + crate::rcc::RccPeripheral {} pub trait Instance: sealed::Instance + crate::Peripheral<P = Self> + crate::rcc::RccPeripheral {}
pub trait AdcPin<T: Instance>: sealed::AdcPin<T> {} pub trait AdcPin<T: Instance>: sealed::AdcPin<T> {}

View File

@ -1,4 +1,4 @@
#[cfg(any(adc_v2, adc_v3, adc_g0))] #[cfg(any(adc_v1, adc_v2, adc_v3, adc_g0))]
#[derive(Clone, Copy, Debug, Eq, PartialEq)] #[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Resolution { pub enum Resolution {
TwelveBit, TwelveBit,
@ -19,7 +19,7 @@ pub enum Resolution {
impl Default for Resolution { impl Default for Resolution {
fn default() -> Self { fn default() -> Self {
#[cfg(any(adc_v2, adc_v3, adc_g0))] #[cfg(any(adc_v1, adc_v2, adc_v3, adc_g0))]
{ {
Self::TwelveBit Self::TwelveBit
} }
@ -40,7 +40,7 @@ impl From<Resolution> for crate::pac::adc::vals::Res {
Resolution::TwelveBit => crate::pac::adc::vals::Res::TWELVEBIT, Resolution::TwelveBit => crate::pac::adc::vals::Res::TWELVEBIT,
Resolution::TenBit => crate::pac::adc::vals::Res::TENBIT, Resolution::TenBit => crate::pac::adc::vals::Res::TENBIT,
Resolution::EightBit => crate::pac::adc::vals::Res::EIGHTBIT, Resolution::EightBit => crate::pac::adc::vals::Res::EIGHTBIT,
#[cfg(any(adc_v2, adc_v3, adc_g0))] #[cfg(any(adc_v1, adc_v2, adc_v3, adc_g0))]
Resolution::SixBit => crate::pac::adc::vals::Res::SIXBIT, Resolution::SixBit => crate::pac::adc::vals::Res::SIXBIT,
} }
} }
@ -56,7 +56,7 @@ impl Resolution {
Resolution::TwelveBit => (1 << 12) - 1, Resolution::TwelveBit => (1 << 12) - 1,
Resolution::TenBit => (1 << 10) - 1, Resolution::TenBit => (1 << 10) - 1,
Resolution::EightBit => (1 << 8) - 1, Resolution::EightBit => (1 << 8) - 1,
#[cfg(any(adc_v2, adc_v3, adc_g0))] #[cfg(any(adc_v1, adc_v2, adc_v3, adc_g0))]
Resolution::SixBit => (1 << 6) - 1, Resolution::SixBit => (1 << 6) - 1,
} }
} }

View File

@ -25,7 +25,7 @@ macro_rules! impl_sample_time {
}; };
} }
#[cfg(adc_f1)] #[cfg(any(adc_f1, adc_v1))]
impl_sample_time!( impl_sample_time!(
"1.5", "1.5",
Cycles1_5, Cycles1_5,

View File

@ -1 +1,171 @@
use embassy_hal_common::into_ref;
use embedded_hal_02::blocking::delay::DelayUs;
use crate::adc::{Adc, AdcPin, Instance, InternalChannel, Resolution, SampleTime};
use crate::peripherals::ADC;
use crate::Peripheral;
pub const VDDA_CALIB_MV: u32 = 3300;
pub const VREF_INT: u32 = 1230;
pub struct Vbat;
impl InternalChannel<ADC> for Vbat {}
impl super::sealed::InternalChannel<ADC> for Vbat {
fn channel(&self) -> u8 {
18
}
}
pub struct Vref;
impl InternalChannel<ADC> for Vref {}
impl super::sealed::InternalChannel<ADC> for Vref {
fn channel(&self) -> u8 {
17
}
}
pub struct Temperature;
impl InternalChannel<ADC> for Temperature {}
impl super::sealed::InternalChannel<ADC> for Temperature {
fn channel(&self) -> u8 {
16
}
}
impl<'d, T: Instance> Adc<'d, T> {
pub fn new(adc: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u32>) -> Self {
into_ref!(adc);
T::enable();
T::reset();
// Delay 1μs when using HSI14 as the ADC clock.
//
// Table 57. ADC characteristics
// tstab = 14 * 1/fadc
delay.delay_us(1);
let s = Self {
adc,
sample_time: Default::default(),
};
s.calibrate();
s
}
pub fn enable_vbat(&self, _delay: &mut impl DelayUs<u32>) -> Vbat {
// SMP must be ≥ 56 ADC clock cycles when using HSI14.
//
// 6.3.20 Vbat monitoring characteristics
// ts_vbat ≥ 4μs
unsafe {
T::regs().ccr().modify(|reg| reg.set_vbaten(true));
}
Vbat
}
pub fn enable_vref(&self, delay: &mut impl DelayUs<u32>) -> Vref {
// Table 28. Embedded internal reference voltage
// tstart = 10μs
unsafe {
T::regs().ccr().modify(|reg| reg.set_vrefen(true));
}
delay.delay_us(10);
Vref
}
pub fn enable_temperature(&self, delay: &mut impl DelayUs<u32>) -> Temperature {
// SMP must be ≥ 56 ADC clock cycles when using HSI14.
//
// 6.3.19 Temperature sensor characteristics
// tstart ≤ 10μs
// ts_temp ≥ 4μs
unsafe {
T::regs().ccr().modify(|reg| reg.set_tsen(true));
}
delay.delay_us(10);
Temperature
}
fn calibrate(&self) {
unsafe {
// A.7.1 ADC calibration code example
if T::regs().cr().read().aden() {
T::regs().cr().modify(|reg| reg.set_addis(true));
}
while T::regs().cr().read().aden() {
// spin
}
T::regs().cfgr1().modify(|reg| reg.set_dmaen(false));
T::regs().cr().modify(|reg| reg.set_adcal(true));
while T::regs().cr().read().adcal() {
// spin
}
}
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
unsafe {
T::regs().cfgr1().modify(|reg| reg.set_res(resolution.into()));
}
}
pub fn read<P>(&mut self, pin: &mut P) -> u16
where
P: AdcPin<T> + crate::gpio::sealed::Pin,
{
let channel = pin.channel();
unsafe {
pin.set_as_analog();
self.read_channel(channel)
}
}
pub fn read_internal(&mut self, channel: &mut impl InternalChannel<T>) -> u16 {
let channel = channel.channel();
unsafe { self.read_channel(channel) }
}
unsafe fn read_channel(&mut self, channel: u8) -> u16 {
// A.7.2 ADC enable sequence code example
if T::regs().isr().read().adrdy() {
T::regs().isr().modify(|reg| reg.set_adrdy(true));
}
T::regs().cr().modify(|reg| reg.set_aden(true));
while !T::regs().isr().read().adrdy() {
// ES0233, 2.4.3 ADEN bit cannot be set immediately after the ADC calibration
// Workaround: When the ADC calibration is complete (ADCAL = 0), keep setting the
// ADEN bit until the ADRDY flag goes high.
T::regs().cr().modify(|reg| reg.set_aden(true));
}
T::regs().isr().modify(|reg| {
reg.set_eoc(true);
reg.set_eosmp(true);
});
// A.7.5 Single conversion sequence code example - Software trigger
T::regs().chselr().write(|reg| reg.set_chselx(channel as usize, true));
T::regs().smpr().modify(|reg| reg.set_smp(self.sample_time.into()));
T::regs().cr().modify(|reg| reg.set_adstart(true));
while !T::regs().isr().read().eoc() {
// spin
}
let value = T::regs().dr().read().0 as u16;
// A.7.3 ADC disable code example
T::regs().cr().modify(|reg| reg.set_adstp(true));
while T::regs().cr().read().adstp() {
// spin
}
T::regs().cr().modify(|reg| reg.set_addis(true));
while T::regs().cr().read().aden() {
// spin
}
value
}
}

View File

@ -190,6 +190,10 @@ mod low_level_api {
fence(Ordering::SeqCst); fence(Ordering::SeqCst);
let ch = dma.ch(channel_number as _); let ch = dma.ch(channel_number as _);
// Reset ch
ch.cr().write(|w| w.set_reset(true));
ch.llr().write(|_| {}); // no linked list ch.llr().write(|_| {}); // no linked list
ch.tr1().write(|w| { ch.tr1().write(|w| {
w.set_sdw(data_size.into()); w.set_sdw(data_size.into());
@ -252,7 +256,7 @@ mod low_level_api {
/// Gets the running status of the channel /// Gets the running status of the channel
pub unsafe fn is_running(dma: Gpdma, ch: u8) -> bool { pub unsafe fn is_running(dma: Gpdma, ch: u8) -> bool {
let ch = dma.ch(ch as _); let ch = dma.ch(ch as _);
!ch.sr().read().idlef() !ch.sr().read().tcf()
} }
/// Gets the total remaining transfers for the channel /// Gets the total remaining transfers for the channel
@ -291,7 +295,10 @@ mod low_level_api {
} }
if sr.suspf() || sr.tcf() { if sr.suspf() || sr.tcf() {
ch.cr().write(|w| w.set_reset(true)); // disable all xxIEs to prevent the irq from firing again.
ch.cr().write(|_| {});
// Wake the future. It'll look at tcf and see it's set.
STATE.channels[state_index].waker.wake(); STATE.channels[state_index].waker.wake();
} }
} }

View File

@ -9,7 +9,7 @@ pub(crate) use self::descriptors::{RDes, RDesRing, TDes, TDesRing};
use super::*; use super::*;
use crate::gpio::sealed::{AFType, Pin as _}; use crate::gpio::sealed::{AFType, Pin as _};
use crate::gpio::{AnyPin, Speed}; use crate::gpio::{AnyPin, Speed};
use crate::pac::{ETH, RCC, SYSCFG}; use crate::pac::ETH;
use crate::Peripheral; use crate::Peripheral;
const MTU: usize = 1514; // 14 Ethernet header + 1500 IP packet const MTU: usize = 1514; // 14 Ethernet header + 1500 IP packet
@ -60,16 +60,33 @@ impl<'d, T: Instance, P: PHY> Ethernet<'d, T, P> {
unsafe { unsafe {
// Enable the necessary Clocks // Enable the necessary Clocks
// NOTE(unsafe) We have exclusive access to the registers // NOTE(unsafe) We have exclusive access to the registers
#[cfg(not(rcc_h5))]
critical_section::with(|_| { critical_section::with(|_| {
RCC.apb4enr().modify(|w| w.set_syscfgen(true)); crate::pac::RCC.apb4enr().modify(|w| w.set_syscfgen(true));
RCC.ahb1enr().modify(|w| { crate::pac::RCC.ahb1enr().modify(|w| {
w.set_eth1macen(true); w.set_eth1macen(true);
w.set_eth1txen(true); w.set_eth1txen(true);
w.set_eth1rxen(true); w.set_eth1rxen(true);
}); });
// RMII // RMII
SYSCFG.pmcr().modify(|w| w.set_epis(0b100)); crate::pac::SYSCFG.pmcr().modify(|w| w.set_epis(0b100));
});
#[cfg(rcc_h5)]
critical_section::with(|_| {
crate::pac::RCC.apb3enr().modify(|w| w.set_sbsen(true));
crate::pac::RCC.ahb1enr().modify(|w| {
w.set_ethen(true);
w.set_ethtxen(true);
w.set_ethrxen(true);
});
// RMII
crate::pac::SBS
.pmcr()
.modify(|w| w.set_eth_sel_phy(crate::pac::sbs::vals::EthSelPhy::B_0X4));
}); });
config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en);

View File

@ -25,11 +25,11 @@ fn cpu_regs() -> pac::exti::Exti {
EXTI EXTI
} }
#[cfg(not(any(exti_c0, exti_g0, exti_l5, gpio_v1, exti_u5)))] #[cfg(not(any(exti_c0, exti_g0, exti_l5, gpio_v1, exti_u5, exti_h5, exti_h50)))]
fn exticr_regs() -> pac::syscfg::Syscfg { fn exticr_regs() -> pac::syscfg::Syscfg {
pac::SYSCFG pac::SYSCFG
} }
#[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5))] #[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50))]
fn exticr_regs() -> pac::exti::Exti { fn exticr_regs() -> pac::exti::Exti {
EXTI EXTI
} }
@ -39,9 +39,9 @@ fn exticr_regs() -> pac::afio::Afio {
} }
pub unsafe fn on_irq() { pub unsafe fn on_irq() {
#[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5)))] #[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50)))]
let bits = EXTI.pr(0).read().0; let bits = EXTI.pr(0).read().0;
#[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5))] #[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50))]
let bits = EXTI.rpr(0).read().0 | EXTI.fpr(0).read().0; let bits = EXTI.rpr(0).read().0 | EXTI.fpr(0).read().0;
// Mask all the channels that fired. // Mask all the channels that fired.
@ -53,9 +53,9 @@ pub unsafe fn on_irq() {
} }
// Clear pending // Clear pending
#[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5)))] #[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50)))]
EXTI.pr(0).write_value(Lines(bits)); EXTI.pr(0).write_value(Lines(bits));
#[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5))] #[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50))]
{ {
EXTI.rpr(0).write_value(Lines(bits)); EXTI.rpr(0).write_value(Lines(bits));
EXTI.fpr(0).write_value(Lines(bits)); EXTI.fpr(0).write_value(Lines(bits));
@ -213,9 +213,9 @@ impl<'a> ExtiInputFuture<'a> {
EXTI.ftsr(0).modify(|w| w.set_line(pin, falling)); EXTI.ftsr(0).modify(|w| w.set_line(pin, falling));
// clear pending bit // clear pending bit
#[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5)))] #[cfg(not(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50)))]
EXTI.pr(0).write(|w| w.set_line(pin, true)); EXTI.pr(0).write(|w| w.set_line(pin, true));
#[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5))] #[cfg(any(exti_c0, exti_g0, exti_l5, exti_u5, exti_h5, exti_h50))]
{ {
EXTI.rpr(0).write(|w| w.set_line(pin, true)); EXTI.rpr(0).write(|w| w.set_line(pin, true));
EXTI.fpr(0).write(|w| w.set_line(pin, true)); EXTI.fpr(0).write(|w| w.set_line(pin, true));
@ -364,7 +364,7 @@ pub(crate) unsafe fn init() {
foreach_exti_irq!(enable_irq); foreach_exti_irq!(enable_irq);
#[cfg(not(any(rcc_wb, rcc_wl5, rcc_wle, stm32f1)))] #[cfg(not(any(rcc_wb, rcc_wl5, rcc_wle, stm32f1, exti_h5, exti_h50)))]
<crate::peripherals::SYSCFG as crate::rcc::sealed::RccPeripheral>::enable(); <crate::peripherals::SYSCFG as crate::rcc::sealed::RccPeripheral>::enable();
#[cfg(stm32f1)] #[cfg(stm32f1)]
<crate::peripherals::AFIO as crate::rcc::sealed::RccPeripheral>::enable(); <crate::peripherals::AFIO as crate::rcc::sealed::RccPeripheral>::enable();

View File

@ -0,0 +1,211 @@
use atomic_polyfill::{fence, Ordering};
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{into_ref, PeripheralRef};
use super::{family, Error, FlashLayout, FlashRegion, FlashSector, FLASH_BASE, FLASH_SIZE, WRITE_SIZE};
use crate::flash::FlashBank;
use crate::Peripheral;
pub struct Flash<'d> {
inner: PeripheralRef<'d, crate::peripherals::FLASH>,
}
impl<'d> Flash<'d> {
pub fn new(p: impl Peripheral<P = crate::peripherals::FLASH> + 'd) -> Self {
into_ref!(p);
Self { inner: p }
}
pub fn into_regions(self) -> FlashLayout<'d> {
FlashLayout::new(self.release())
}
pub fn blocking_read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
blocking_read(FLASH_BASE as u32, FLASH_SIZE as u32, offset, bytes)
}
pub fn blocking_write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Error> {
unsafe { blocking_write(FLASH_BASE as u32, FLASH_SIZE as u32, offset, bytes) }
}
pub fn blocking_erase(&mut self, from: u32, to: u32) -> Result<(), Error> {
unsafe { blocking_erase(FLASH_BASE as u32, from, to) }
}
pub(crate) fn release(self) -> PeripheralRef<'d, crate::peripherals::FLASH> {
let mut flash = self;
unsafe { flash.inner.clone_unchecked() }
}
}
fn blocking_read(base: u32, size: u32, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
if offset + bytes.len() as u32 > size {
return Err(Error::Size);
}
let start_address = base + offset;
let flash_data = unsafe { core::slice::from_raw_parts(start_address as *const u8, bytes.len()) };
bytes.copy_from_slice(flash_data);
Ok(())
}
unsafe fn blocking_write(base: u32, size: u32, offset: u32, bytes: &[u8]) -> Result<(), Error> {
if offset + bytes.len() as u32 > size {
return Err(Error::Size);
}
if offset % WRITE_SIZE as u32 != 0 || bytes.len() % WRITE_SIZE != 0 {
return Err(Error::Unaligned);
}
let mut address = base + offset;
trace!("Writing {} bytes at 0x{:x}", bytes.len(), address);
for chunk in bytes.chunks(WRITE_SIZE) {
critical_section::with(|_| {
family::clear_all_err();
fence(Ordering::SeqCst);
family::unlock();
fence(Ordering::SeqCst);
family::begin_write();
fence(Ordering::SeqCst);
let _on_drop = OnDrop::new(|| {
family::end_write();
fence(Ordering::SeqCst);
family::lock();
});
family::blocking_write(address, chunk.try_into().unwrap())
})?;
address += WRITE_SIZE as u32;
}
Ok(())
}
unsafe fn blocking_erase(base: u32, from: u32, to: u32) -> Result<(), Error> {
let start_address = base + from;
let end_address = base + to;
let regions = family::get_flash_regions();
// Test if the address range is aligned at sector base addresses
let mut address = start_address;
while address < end_address {
let sector = get_sector(address, regions);
if sector.start != address {
return Err(Error::Unaligned);
}
address += sector.size;
}
if address != end_address {
return Err(Error::Unaligned);
}
trace!("Erasing from 0x{:x} to 0x{:x}", start_address, end_address);
let mut address = start_address;
while address < end_address {
let sector = get_sector(address, regions);
trace!("Erasing sector: {:?}", sector);
critical_section::with(|_| {
family::clear_all_err();
fence(Ordering::SeqCst);
family::unlock();
fence(Ordering::SeqCst);
let _on_drop = OnDrop::new(|| {
family::lock();
});
family::blocking_erase_sector(&sector)
})?;
address += sector.size;
}
Ok(())
}
pub(crate) fn get_sector(address: u32, regions: &[&FlashRegion]) -> FlashSector {
let mut current_bank = FlashBank::Bank1;
let mut bank_offset = 0;
for region in regions {
if region.bank != current_bank {
current_bank = region.bank;
bank_offset = 0;
}
if address < region.end() {
let index_in_region = (address - region.base) / region.erase_size;
return FlashSector {
bank: region.bank,
index_in_bank: bank_offset + index_in_region as u8,
start: region.base + index_in_region * region.erase_size,
size: region.erase_size,
};
}
bank_offset += region.sectors();
}
panic!("Flash sector not found");
}
impl FlashRegion {
pub fn blocking_read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
blocking_read(self.base, self.size, offset, bytes)
}
pub fn blocking_write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Error> {
unsafe { blocking_write(self.base, self.size, offset, bytes) }
}
pub fn blocking_erase(&mut self, from: u32, to: u32) -> Result<(), Error> {
unsafe { blocking_erase(self.base, from, to) }
}
}
foreach_flash_region! {
($type_name:ident, $write_size:literal, $erase_size:literal) => {
impl crate::_generated::flash_regions::$type_name<'_> {
pub fn blocking_read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
blocking_read(self.0.base, self.0.size, offset, bytes)
}
pub fn blocking_write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Error> {
unsafe { blocking_write(self.0.base, self.0.size, offset, bytes) }
}
pub fn blocking_erase(&mut self, from: u32, to: u32) -> Result<(), Error> {
unsafe { blocking_erase(self.0.base, from, to) }
}
}
impl embedded_storage::nor_flash::ErrorType for crate::_generated::flash_regions::$type_name<'_> {
type Error = Error;
}
impl embedded_storage::nor_flash::ReadNorFlash for crate::_generated::flash_regions::$type_name<'_> {
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(offset, bytes)
}
fn capacity(&self) -> usize {
self.0.size as usize
}
}
impl embedded_storage::nor_flash::NorFlash for crate::_generated::flash_regions::$type_name<'_> {
const WRITE_SIZE: usize = $write_size;
const ERASE_SIZE: usize = $erase_size;
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(offset, bytes)
}
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.blocking_erase(from, to)
}
}
};
}

View File

@ -1,9 +1,16 @@
use core::convert::TryInto; use core::convert::TryInto;
use core::ptr::write_volatile; use core::ptr::write_volatile;
use atomic_polyfill::{fence, Ordering};
use super::{FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE};
use crate::flash::Error; use crate::flash::Error;
use crate::pac; use crate::pac;
pub const fn get_flash_regions() -> &'static [&'static FlashRegion] {
&FLASH_REGIONS
}
pub(crate) unsafe fn lock() { pub(crate) unsafe fn lock() {
pac::FLASH.cr().modify(|w| w.set_lock(true)); pac::FLASH.cr().modify(|w| w.set_lock(true));
} }
@ -13,36 +20,35 @@ pub(crate) unsafe fn unlock() {
pac::FLASH.keyr().write(|w| w.set_fkeyr(0xCDEF_89AB)); pac::FLASH.keyr().write(|w| w.set_fkeyr(0xCDEF_89AB));
} }
pub(crate) unsafe fn blocking_write(offset: u32, buf: &[u8]) -> Result<(), Error> { pub(crate) unsafe fn begin_write() {
assert_eq!(0, WRITE_SIZE % 2);
pac::FLASH.cr().write(|w| w.set_pg(true)); pac::FLASH.cr().write(|w| w.set_pg(true));
let ret = {
let mut ret: Result<(), Error> = Ok(());
let mut offset = offset;
for chunk in buf.chunks(2) {
write_volatile(offset as *mut u16, u16::from_le_bytes(chunk[0..2].try_into().unwrap()));
offset += chunk.len() as u32;
ret = blocking_wait_ready();
if ret.is_err() {
break;
} }
}
ret
};
pub(crate) unsafe fn end_write() {
pac::FLASH.cr().write(|w| w.set_pg(false)); pac::FLASH.cr().write(|w| w.set_pg(false));
ret
} }
pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> { pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
for page in (from..to).step_by(super::ERASE_SIZE) { let mut address = start_address;
for chunk in buf.chunks(2) {
write_volatile(address as *mut u16, u16::from_le_bytes(chunk.try_into().unwrap()));
address += chunk.len() as u32;
// prevents parallelism errors
fence(Ordering::SeqCst);
}
blocking_wait_ready()
}
pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
pac::FLASH.cr().modify(|w| { pac::FLASH.cr().modify(|w| {
w.set_per(true); w.set_per(true);
}); });
pac::FLASH.ar().write(|w| w.set_far(page)); pac::FLASH.ar().write(|w| w.set_far(sector.start));
pac::FLASH.cr().modify(|w| { pac::FLASH.cr().modify(|w| {
w.set_strt(true); w.set_strt(true);
@ -63,8 +69,6 @@ pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> {
if ret.is_err() { if ret.is_err() {
return ret; return ret;
} }
}
Ok(()) Ok(())
} }
@ -82,7 +86,7 @@ pub(crate) unsafe fn clear_all_err() {
}); });
} }
pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> { unsafe fn blocking_wait_ready() -> Result<(), Error> {
loop { loop {
let sr = pac::FLASH.sr().read(); let sr = pac::FLASH.sr().read();

View File

@ -2,27 +2,108 @@ use core::convert::TryInto;
use core::ptr::write_volatile; use core::ptr::write_volatile;
use core::sync::atomic::{fence, Ordering}; use core::sync::atomic::{fence, Ordering};
use super::{ERASE_SIZE, FLASH_BASE, FLASH_SIZE}; use super::{FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE};
use crate::flash::Error; use crate::flash::Error;
use crate::pac; use crate::pac;
const SECOND_BANK_SECTOR_START: u32 = 12; #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))]
mod alt_regions {
use embassy_hal_common::PeripheralRef;
use stm32_metapac::FLASH_SIZE;
unsafe fn is_dual_bank() -> bool { use crate::_generated::flash_regions::{BANK1_REGION1, BANK1_REGION2, BANK1_REGION3};
match FLASH_SIZE / 1024 { use crate::flash::{Bank1Region1, Bank1Region2, Flash, FlashBank, FlashRegion};
// 1 MB devices depend on configuration use crate::peripherals::FLASH;
1024 => {
if cfg!(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479)) { pub const ALT_BANK1_REGION3: FlashRegion = FlashRegion {
pac::FLASH.optcr().read().db1m() size: 3 * BANK1_REGION3.erase_size,
..BANK1_REGION3
};
pub const ALT_BANK2_REGION1: FlashRegion = FlashRegion {
bank: FlashBank::Bank2,
base: BANK1_REGION1.base + FLASH_SIZE as u32 / 2,
..BANK1_REGION1
};
pub const ALT_BANK2_REGION2: FlashRegion = FlashRegion {
bank: FlashBank::Bank2,
base: BANK1_REGION2.base + FLASH_SIZE as u32 / 2,
..BANK1_REGION2
};
pub const ALT_BANK2_REGION3: FlashRegion = FlashRegion {
bank: FlashBank::Bank2,
base: BANK1_REGION3.base + FLASH_SIZE as u32 / 2,
size: 3 * BANK1_REGION3.erase_size,
..BANK1_REGION3
};
pub const ALT_FLASH_REGIONS: [&FlashRegion; 6] = [
&BANK1_REGION1,
&BANK1_REGION2,
&ALT_BANK1_REGION3,
&ALT_BANK2_REGION1,
&ALT_BANK2_REGION2,
&ALT_BANK2_REGION3,
];
pub type AltBank1Region1<'d> = Bank1Region1<'d>;
pub type AltBank1Region2<'d> = Bank1Region2<'d>;
pub struct AltBank1Region3<'d>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>);
pub struct AltBank2Region1<'d>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>);
pub struct AltBank2Region2<'d>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>);
pub struct AltBank2Region3<'d>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>);
pub struct AltFlashLayout<'d> {
pub bank1_region1: AltBank1Region1<'d>,
pub bank1_region2: AltBank1Region2<'d>,
pub bank1_region3: AltBank1Region3<'d>,
pub bank2_region1: AltBank2Region1<'d>,
pub bank2_region2: AltBank2Region2<'d>,
pub bank2_region3: AltBank2Region3<'d>,
}
impl<'d> Flash<'d> {
pub fn into_alt_regions(self) -> AltFlashLayout<'d> {
unsafe { crate::pac::FLASH.optcr().modify(|r| r.set_db1m(true)) };
// SAFETY: We never expose the cloned peripheral references, and their instance is not public.
// Also, all flash region operations are protected with a cs.
let mut p = self.release();
AltFlashLayout {
bank1_region1: Bank1Region1(&BANK1_REGION1, unsafe { p.clone_unchecked() }),
bank1_region2: Bank1Region2(&BANK1_REGION2, unsafe { p.clone_unchecked() }),
bank1_region3: AltBank1Region3(&ALT_BANK1_REGION3, unsafe { p.clone_unchecked() }),
bank2_region1: AltBank2Region1(&ALT_BANK2_REGION1, unsafe { p.clone_unchecked() }),
bank2_region2: AltBank2Region2(&ALT_BANK2_REGION2, unsafe { p.clone_unchecked() }),
bank2_region3: AltBank2Region3(&ALT_BANK2_REGION3, unsafe { p.clone_unchecked() }),
}
}
}
impl Drop for AltFlashLayout<'_> {
fn drop(&mut self) {
unsafe {
super::lock();
crate::pac::FLASH.optcr().modify(|r| r.set_db1m(false))
};
}
}
}
#[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))]
pub use alt_regions::{AltFlashLayout, ALT_FLASH_REGIONS};
#[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))]
pub fn get_flash_regions() -> &'static [&'static FlashRegion] {
if unsafe { pac::FLASH.optcr().read().db1m() } {
&ALT_FLASH_REGIONS
} else { } else {
false &FLASH_REGIONS
} }
} }
// 2 MB devices are always dual bank
2048 => true, #[cfg(not(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479)))]
// All other devices are single bank pub const fn get_flash_regions() -> &'static [&'static FlashRegion] {
_ => false, &FLASH_REGIONS
}
} }
pub(crate) unsafe fn lock() { pub(crate) unsafe fn lock() {
@ -34,93 +115,34 @@ pub(crate) unsafe fn unlock() {
pac::FLASH.keyr().write(|w| w.set_key(0xCDEF_89AB)); pac::FLASH.keyr().write(|w| w.set_key(0xCDEF_89AB));
} }
pub(crate) unsafe fn blocking_write(offset: u32, buf: &[u8]) -> Result<(), Error> { pub(crate) unsafe fn begin_write() {
assert_eq!(0, WRITE_SIZE % 4);
pac::FLASH.cr().write(|w| { pac::FLASH.cr().write(|w| {
w.set_pg(true); w.set_pg(true);
w.set_psize(pac::flash::vals::Psize::PSIZE32); w.set_psize(pac::flash::vals::Psize::PSIZE32);
}); });
}
let ret = { pub(crate) unsafe fn end_write() {
let mut ret: Result<(), Error> = Ok(()); pac::FLASH.cr().write(|w| w.set_pg(false));
let mut offset = offset; }
for chunk in buf.chunks(super::WRITE_SIZE) {
for val in chunk.chunks(4) { pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
write_volatile(offset as *mut u32, u32::from_le_bytes(val[0..4].try_into().unwrap())); let mut address = start_address;
offset += val.len() as u32; for val in buf.chunks(4) {
write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap()));
address += val.len() as u32;
// prevents parallelism errors // prevents parallelism errors
fence(Ordering::SeqCst); fence(Ordering::SeqCst);
} }
ret = blocking_wait_ready(); blocking_wait_ready()
if ret.is_err() {
break;
}
}
ret
};
pac::FLASH.cr().write(|w| w.set_pg(false));
ret
} }
struct FlashSector { pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
index: u8, let snb = ((sector.bank as u8) << 4) + sector.index_in_bank;
size: u32,
}
fn get_sector(addr: u32, dual_bank: bool) -> FlashSector {
let offset = addr - FLASH_BASE as u32;
let bank_size = match dual_bank {
true => FLASH_SIZE / 2,
false => FLASH_SIZE,
} as u32;
let bank = offset / bank_size;
let offset_in_bank = offset % bank_size;
let index_in_bank = if offset_in_bank >= ERASE_SIZE as u32 / 2 {
4 + offset_in_bank / ERASE_SIZE as u32
} else {
offset_in_bank / (ERASE_SIZE as u32 / 8)
};
// First 4 sectors are 16KB, then one 64KB, and rest are 128KB
let size = match index_in_bank {
0..=3 => 16 * 1024,
4 => 64 * 1024,
_ => 128 * 1024,
};
let index = if bank == 1 {
SECOND_BANK_SECTOR_START + index_in_bank
} else {
index_in_bank
} as u8;
FlashSector { index, size }
}
pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> {
let mut addr = from;
let dual_bank = is_dual_bank();
while addr < to {
let sector = get_sector(addr, dual_bank);
erase_sector(sector.index)?;
addr += sector.size;
}
Ok(())
}
unsafe fn erase_sector(sector: u8) -> Result<(), Error> {
let bank = sector / SECOND_BANK_SECTOR_START as u8;
let snb = (bank << 4) + (sector % SECOND_BANK_SECTOR_START as u8);
trace!("Erasing sector: {}", sector);
pac::FLASH.cr().modify(|w| { pac::FLASH.cr().modify(|w| {
w.set_ser(true); w.set_ser(true);
@ -148,7 +170,7 @@ pub(crate) unsafe fn clear_all_err() {
}); });
} }
pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> { unsafe fn blocking_wait_ready() -> Result<(), Error> {
loop { loop {
let sr = pac::FLASH.sr().read(); let sr = pac::FLASH.sr().read();
@ -173,3 +195,80 @@ pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> {
} }
} }
} }
#[cfg(test)]
mod tests {
use super::*;
use crate::flash::{get_sector, FlashBank};
#[test]
#[cfg(stm32f429)]
fn can_get_sector_single_bank() {
const SMALL_SECTOR_SIZE: u32 = 16 * 1024;
const MEDIUM_SECTOR_SIZE: u32 = 64 * 1024;
const LARGE_SECTOR_SIZE: u32 = 128 * 1024;
let assert_sector = |index_in_bank: u8, start: u32, size: u32, address: u32| {
assert_eq!(
FlashSector {
bank: FlashBank::Bank1,
index_in_bank,
start,
size
},
get_sector(address, &FLASH_REGIONS)
)
};
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF);
assert_sector(3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000);
assert_sector(3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF);
assert_sector(4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000);
assert_sector(4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000);
assert_sector(5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000);
assert_sector(11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF);
let assert_sector = |bank: FlashBank, index_in_bank: u8, start: u32, size: u32, address: u32| {
assert_eq!(
FlashSector {
bank,
index_in_bank,
start,
size
},
get_sector(address, &ALT_FLASH_REGIONS)
)
};
assert_sector(FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF);
assert_sector(FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000);
assert_sector(FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF);
assert_sector(FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000);
assert_sector(FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000);
assert_sector(FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0806_0000);
assert_sector(FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF);
assert_sector(FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_0000);
assert_sector(FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_3FFF);
assert_sector(FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_C000);
assert_sector(FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_FFFF);
assert_sector(FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_0000);
assert_sector(FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_FFFF);
assert_sector(FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080A_0000);
assert_sector(FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080B_FFFF);
assert_sector(FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000);
assert_sector(FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF);
}
}

View File

@ -2,9 +2,14 @@ use core::convert::TryInto;
use core::ptr::write_volatile; use core::ptr::write_volatile;
use core::sync::atomic::{fence, Ordering}; use core::sync::atomic::{fence, Ordering};
use super::{FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE};
use crate::flash::Error; use crate::flash::Error;
use crate::pac; use crate::pac;
pub const fn get_flash_regions() -> &'static [&'static FlashRegion] {
&FLASH_REGIONS
}
pub(crate) unsafe fn lock() { pub(crate) unsafe fn lock() {
pac::FLASH.cr().modify(|w| w.set_lock(true)); pac::FLASH.cr().modify(|w| w.set_lock(true));
} }
@ -14,64 +19,36 @@ pub(crate) unsafe fn unlock() {
pac::FLASH.keyr().write(|w| w.set_key(0xCDEF_89AB)); pac::FLASH.keyr().write(|w| w.set_key(0xCDEF_89AB));
} }
pub(crate) unsafe fn blocking_write(offset: u32, buf: &[u8]) -> Result<(), Error> { pub(crate) unsafe fn begin_write() {
assert_eq!(0, WRITE_SIZE % 4);
pac::FLASH.cr().write(|w| { pac::FLASH.cr().write(|w| {
w.set_pg(true); w.set_pg(true);
w.set_psize(pac::flash::vals::Psize::PSIZE32); w.set_psize(pac::flash::vals::Psize::PSIZE32);
}); });
}
let ret = { pub(crate) unsafe fn end_write() {
let mut ret: Result<(), Error> = Ok(()); pac::FLASH.cr().write(|w| w.set_pg(false));
let mut offset = offset; }
for chunk in buf.chunks(super::WRITE_SIZE) {
for val in chunk.chunks(4) { pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
write_volatile(offset as *mut u32, u32::from_le_bytes(val[0..4].try_into().unwrap())); let mut address = start_address;
offset += val.len() as u32; for val in buf.chunks(4) {
write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap()));
address += val.len() as u32;
// prevents parallelism errors // prevents parallelism errors
fence(Ordering::SeqCst); fence(Ordering::SeqCst);
} }
ret = blocking_wait_ready(); blocking_wait_ready()
if ret.is_err() {
break;
}
}
ret
};
pac::FLASH.cr().write(|w| w.set_pg(false));
ret
} }
pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> { pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
let start_sector = if from >= (super::FLASH_BASE + super::ERASE_SIZE / 2) as u32 {
4 + (from - super::FLASH_BASE as u32) / super::ERASE_SIZE as u32
} else {
(from - super::FLASH_BASE as u32) / (super::ERASE_SIZE as u32 / 8)
};
let end_sector = if to >= (super::FLASH_BASE + super::ERASE_SIZE / 2) as u32 {
4 + (to - super::FLASH_BASE as u32) / super::ERASE_SIZE as u32
} else {
(to - super::FLASH_BASE as u32) / (super::ERASE_SIZE as u32 / 8)
};
for sector in start_sector..end_sector {
let ret = erase_sector(sector as u8);
if ret.is_err() {
return ret;
}
}
Ok(())
}
unsafe fn erase_sector(sector: u8) -> Result<(), Error> {
pac::FLASH.cr().modify(|w| { pac::FLASH.cr().modify(|w| {
w.set_ser(true); w.set_ser(true);
w.set_snb(sector) w.set_snb(sector.index_in_bank)
}); });
pac::FLASH.cr().modify(|w| { pac::FLASH.cr().modify(|w| {
@ -107,7 +84,7 @@ pub(crate) unsafe fn clear_all_err() {
}); });
} }
pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> { unsafe fn blocking_wait_ready() -> Result<(), Error> {
loop { loop {
let sr = pac::FLASH.sr().read(); let sr = pac::FLASH.sr().read();
@ -132,3 +109,75 @@ pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> {
} }
} }
} }
#[cfg(test)]
mod tests {
use super::*;
use crate::flash::{get_sector, FlashBank};
#[test]
#[cfg(stm32f732)]
fn can_get_sector() {
const SMALL_SECTOR_SIZE: u32 = 16 * 1024;
const MEDIUM_SECTOR_SIZE: u32 = 64 * 1024;
const LARGE_SECTOR_SIZE: u32 = 128 * 1024;
let assert_sector = |index_in_bank: u8, start: u32, size: u32, address: u32| {
assert_eq!(
FlashSector {
bank: FlashBank::Bank1,
index_in_bank,
start,
size
},
get_sector(address, &FLASH_REGIONS)
)
};
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF);
assert_sector(3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000);
assert_sector(3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF);
assert_sector(4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000);
assert_sector(4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000);
assert_sector(5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0806_0000);
assert_sector(7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF);
}
#[test]
#[cfg(stm32f769)]
fn can_get_sector() {
const SMALL_SECTOR_SIZE: u32 = 32 * 1024;
const MEDIUM_SECTOR_SIZE: u32 = 128 * 1024;
const LARGE_SECTOR_SIZE: u32 = 256 * 1024;
let assert_sector = |index_in_bank: u8, start: u32, size: u32, address: u32| {
assert_eq!(
FlashSector {
bank: FlashBank::Bank1,
index_in_bank,
start,
size
},
get_sector(address, &FLASH_REGIONS)
)
};
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_7FFF);
assert_sector(3, 0x0801_8000, SMALL_SECTOR_SIZE, 0x0801_8000);
assert_sector(3, 0x0801_8000, SMALL_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(4, 0x0802_0000, MEDIUM_SECTOR_SIZE, 0x0802_0000);
assert_sector(4, 0x0802_0000, MEDIUM_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(5, 0x0804_0000, LARGE_SECTOR_SIZE, 0x0804_0000);
assert_sector(5, 0x0804_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF);
assert_sector(7, 0x080C_0000, LARGE_SECTOR_SIZE, 0x080C_0000);
assert_sector(7, 0x080C_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF);
}
}

View File

@ -1,13 +1,18 @@
use core::convert::TryInto; use core::convert::TryInto;
use core::ptr::write_volatile; use core::ptr::write_volatile;
use atomic_polyfill::{fence, Ordering};
use super::{FlashRegion, FlashSector, BANK1_REGION, FLASH_REGIONS, WRITE_SIZE};
use crate::flash::Error; use crate::flash::Error;
use crate::pac; use crate::pac;
const SECOND_BANK_OFFSET: usize = 0x0010_0000;
const fn is_dual_bank() -> bool { const fn is_dual_bank() -> bool {
super::FLASH_SIZE / 2 > super::ERASE_SIZE FLASH_REGIONS.len() == 2
}
pub fn get_flash_regions() -> &'static [&'static FlashRegion] {
&FLASH_REGIONS
} }
pub(crate) unsafe fn lock() { pub(crate) unsafe fn lock() {
@ -20,90 +25,64 @@ pub(crate) unsafe fn lock() {
pub(crate) unsafe fn unlock() { pub(crate) unsafe fn unlock() {
pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0x4567_0123));
pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); pac::FLASH.bank(0).keyr().write(|w| w.set_keyr(0xCDEF_89AB));
if is_dual_bank() { if is_dual_bank() {
pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0x4567_0123)); pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0x4567_0123));
pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0xCDEF_89AB)); pac::FLASH.bank(1).keyr().write(|w| w.set_keyr(0xCDEF_89AB));
} }
} }
pub(crate) unsafe fn blocking_write(offset: u32, buf: &[u8]) -> Result<(), Error> { pub(crate) unsafe fn begin_write() {
let bank = if !is_dual_bank() || (offset - super::FLASH_BASE as u32) < SECOND_BANK_OFFSET as u32 { assert_eq!(0, WRITE_SIZE % 4);
}
pub(crate) unsafe fn end_write() {}
pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
// We cannot have the write setup sequence in begin_write as it depends on the address
let bank = if start_address < BANK1_REGION.end() {
pac::FLASH.bank(0) pac::FLASH.bank(0)
} else { } else {
pac::FLASH.bank(1) pac::FLASH.bank(1)
}; };
bank.cr().write(|w| { bank.cr().write(|w| {
w.set_pg(true); w.set_pg(true);
w.set_psize(2); // 32 bits at once w.set_psize(2); // 32 bits at once
}); });
cortex_m::asm::isb(); cortex_m::asm::isb();
cortex_m::asm::dsb(); cortex_m::asm::dsb();
core::sync::atomic::fence(core::sync::atomic::Ordering::SeqCst); fence(Ordering::SeqCst);
let ret = { let mut res = None;
let mut ret: Result<(), Error> = Ok(()); let mut address = start_address;
let mut offset = offset; for val in buf.chunks(4) {
'outer: for chunk in buf.chunks(super::WRITE_SIZE) { write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap()));
for val in chunk.chunks(4) { address += val.len() as u32;
trace!("Writing at {:x}", offset);
write_volatile(offset as *mut u32, u32::from_le_bytes(val[0..4].try_into().unwrap()));
offset += val.len() as u32;
ret = blocking_wait_ready(bank); res = Some(blocking_wait_ready(bank));
bank.sr().modify(|w| { bank.sr().modify(|w| {
if w.eop() { if w.eop() {
w.set_eop(true); w.set_eop(true);
} }
}); });
if ret.is_err() { if res.unwrap().is_err() {
break 'outer; break;
} }
} }
}
ret
};
bank.cr().write(|w| w.set_pg(false)); bank.cr().write(|w| w.set_pg(false));
cortex_m::asm::isb(); cortex_m::asm::isb();
cortex_m::asm::dsb(); cortex_m::asm::dsb();
core::sync::atomic::fence(core::sync::atomic::Ordering::SeqCst); fence(Ordering::SeqCst);
ret res.unwrap()
} }
pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> { pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
let from = from - super::FLASH_BASE as u32; let bank = pac::FLASH.bank(sector.bank as usize);
let to = to - super::FLASH_BASE as u32;
let (start, end) = if to <= super::FLASH_SIZE as u32 {
let start_sector = from / super::ERASE_SIZE as u32;
let end_sector = to / super::ERASE_SIZE as u32;
(start_sector, end_sector)
} else {
error!("Attempting to write outside of defined sectors {:x} {:x}", from, to);
return Err(Error::Unaligned);
};
trace!("Erasing sectors from {} to {}", start, end);
for sector in start..end {
let bank = if sector >= 8 { 1 } else { 0 };
let ret = erase_sector(pac::FLASH.bank(bank), (sector % 8) as u8);
if ret.is_err() {
return ret;
}
}
Ok(())
}
unsafe fn erase_sector(bank: pac::flash::Bank, sector: u8) -> Result<(), Error> {
bank.cr().modify(|w| { bank.cr().modify(|w| {
w.set_ser(true); w.set_ser(true);
w.set_snb(sector) w.set_snb(sector.index_in_bank)
}); });
bank.cr().modify(|w| { bank.cr().modify(|w| {
@ -160,7 +139,7 @@ unsafe fn bank_clear_all_err(bank: pac::flash::Bank) {
}); });
} }
pub(crate) unsafe fn blocking_wait_ready(bank: pac::flash::Bank) -> Result<(), Error> { unsafe fn blocking_wait_ready(bank: pac::flash::Bank) -> Result<(), Error> {
loop { loop {
let sr = bank.sr().read(); let sr = bank.sr().read();

View File

@ -1,9 +1,15 @@
use core::convert::TryInto;
use core::ptr::write_volatile; use core::ptr::write_volatile;
use atomic_polyfill::{fence, Ordering};
use super::{FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE};
use crate::flash::Error; use crate::flash::Error;
use crate::pac; use crate::pac;
pub const fn get_flash_regions() -> &'static [&'static FlashRegion] {
&FLASH_REGIONS
}
pub(crate) unsafe fn lock() { pub(crate) unsafe fn lock() {
#[cfg(any(flash_wl, flash_wb, flash_l4))] #[cfg(any(flash_wl, flash_wb, flash_l4))]
pac::FLASH.cr().modify(|w| w.set_lock(true)); pac::FLASH.cr().modify(|w| w.set_lock(true));
@ -33,35 +39,32 @@ pub(crate) unsafe fn unlock() {
} }
} }
pub(crate) unsafe fn blocking_write(offset: u32, buf: &[u8]) -> Result<(), Error> { pub(crate) unsafe fn begin_write() {
assert_eq!(0, WRITE_SIZE % 4);
#[cfg(any(flash_wl, flash_wb, flash_l4))] #[cfg(any(flash_wl, flash_wb, flash_l4))]
pac::FLASH.cr().write(|w| w.set_pg(true)); pac::FLASH.cr().write(|w| w.set_pg(true));
let ret = {
let mut ret: Result<(), Error> = Ok(());
let mut offset = offset;
for chunk in buf.chunks(super::WRITE_SIZE) {
for val in chunk.chunks(4) {
write_volatile(offset as *mut u32, u32::from_le_bytes(val[0..4].try_into().unwrap()));
offset += val.len() as u32;
} }
ret = blocking_wait_ready(); pub(crate) unsafe fn end_write() {
if ret.is_err() {
break;
}
}
ret
};
#[cfg(any(flash_wl, flash_wb, flash_l4))] #[cfg(any(flash_wl, flash_wb, flash_l4))]
pac::FLASH.cr().write(|w| w.set_pg(false)); pac::FLASH.cr().write(|w| w.set_pg(false));
ret
} }
pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> { pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
for page in (from..to).step_by(super::ERASE_SIZE) { let mut address = start_address;
for val in buf.chunks(4) {
write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap()));
address += val.len() as u32;
// prevents parallelism errors
fence(Ordering::SeqCst);
}
blocking_wait_ready()
}
pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
#[cfg(any(flash_l0, flash_l1))] #[cfg(any(flash_l0, flash_l1))]
{ {
pac::FLASH.pecr().modify(|w| { pac::FLASH.pecr().modify(|w| {
@ -69,12 +72,12 @@ pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> {
w.set_prog(true); w.set_prog(true);
}); });
write_volatile(page as *mut u32, 0xFFFFFFFF); write_volatile(sector.start as *mut u32, 0xFFFFFFFF);
} }
#[cfg(any(flash_wl, flash_wb, flash_l4))] #[cfg(any(flash_wl, flash_wb, flash_l4))]
{ {
let idx = (page - super::FLASH_BASE as u32) / super::ERASE_SIZE as u32; let idx = (sector.start - super::FLASH_BASE as u32) / super::BANK1_REGION.erase_size as u32;
#[cfg(flash_l4)] #[cfg(flash_l4)]
let (idx, bank) = if idx > 255 { (idx - 256, true) } else { (idx, false) }; let (idx, bank) = if idx > 255 { (idx - 256, true) } else { (idx, false) };
@ -103,12 +106,8 @@ pub(crate) unsafe fn blocking_erase(from: u32, to: u32) -> Result<(), Error> {
}); });
clear_all_err(); clear_all_err();
if ret.is_err() {
return ret;
}
}
Ok(()) ret
} }
pub(crate) unsafe fn clear_all_err() { pub(crate) unsafe fn clear_all_err() {
@ -149,7 +148,7 @@ pub(crate) unsafe fn clear_all_err() {
}); });
} }
pub(crate) unsafe fn blocking_wait_ready() -> Result<(), Error> { unsafe fn blocking_wait_ready() -> Result<(), Error> {
loop { loop {
let sr = pac::FLASH.sr().read(); let sr = pac::FLASH.sr().read();

View File

@ -1,89 +1,67 @@
use embassy_hal_common::{into_ref, PeripheralRef}; use embedded_storage::nor_flash::{NorFlashError, NorFlashErrorKind};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
pub use crate::pac::{ERASE_SIZE, ERASE_VALUE, FLASH_BASE, FLASH_SIZE, WRITE_SIZE}; #[cfg(flash)]
use crate::peripherals::FLASH; mod common;
use crate::Peripheral;
const FLASH_END: usize = FLASH_BASE + FLASH_SIZE;
#[cfg_attr(any(flash_wl, flash_wb, flash_l0, flash_l1, flash_l4), path = "l.rs")] #[cfg(flash)]
pub use common::*;
pub use crate::_generated::flash_regions::*;
pub use crate::pac::{FLASH_BASE, FLASH_SIZE, WRITE_SIZE};
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct FlashRegion {
pub bank: FlashBank,
pub base: u32,
pub size: u32,
pub erase_size: u32,
pub write_size: u32,
pub erase_value: u8,
}
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct FlashSector {
pub bank: FlashBank,
pub index_in_bank: u8,
pub start: u32,
pub size: u32,
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum FlashBank {
Bank1 = 0,
Bank2 = 1,
Otp,
}
impl FlashRegion {
pub const fn end(&self) -> u32 {
self.base + self.size
}
pub const fn sectors(&self) -> u8 {
(self.size / self.erase_size) as u8
}
}
#[cfg_attr(any(flash_l0, flash_l1, flash_l4, flash_wl, flash_wb), path = "l.rs")]
#[cfg_attr(flash_f3, path = "f3.rs")] #[cfg_attr(flash_f3, path = "f3.rs")]
#[cfg_attr(flash_f4, path = "f4.rs")] #[cfg_attr(flash_f4, path = "f4.rs")]
#[cfg_attr(flash_f7, path = "f7.rs")] #[cfg_attr(flash_f7, path = "f7.rs")]
#[cfg_attr(flash_h7, path = "h7.rs")] #[cfg_attr(flash_h7, path = "h7.rs")]
#[cfg_attr(
not(any(
flash_l0, flash_l1, flash_l4, flash_wl, flash_wb, flash_f3, flash_f4, flash_f7, flash_h7
)),
path = "other.rs"
)]
mod family; mod family;
pub struct Flash<'d> { #[allow(unused_imports)]
_inner: PeripheralRef<'d, FLASH>, pub use family::*;
}
impl<'d> Flash<'d> {
pub fn new(p: impl Peripheral<P = FLASH> + 'd) -> Self {
into_ref!(p);
Self { _inner: p }
}
pub fn blocking_read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
let offset = FLASH_BASE as u32 + offset;
if offset as usize >= FLASH_END || offset as usize + bytes.len() > FLASH_END {
return Err(Error::Size);
}
let flash_data = unsafe { core::slice::from_raw_parts(offset as *const u8, bytes.len()) };
bytes.copy_from_slice(flash_data);
Ok(())
}
pub fn blocking_write(&mut self, offset: u32, buf: &[u8]) -> Result<(), Error> {
let offset = FLASH_BASE as u32 + offset;
if offset as usize + buf.len() > FLASH_END {
return Err(Error::Size);
}
if offset as usize % WRITE_SIZE != 0 || buf.len() as usize % WRITE_SIZE != 0 {
return Err(Error::Unaligned);
}
trace!("Writing {} bytes at 0x{:x}", buf.len(), offset);
self.clear_all_err();
unsafe {
family::unlock();
let res = family::blocking_write(offset, buf);
family::lock();
res
}
}
pub fn blocking_erase(&mut self, from: u32, to: u32) -> Result<(), Error> {
let from = FLASH_BASE as u32 + from;
let to = FLASH_BASE as u32 + to;
if to < from || to as usize > FLASH_END {
return Err(Error::Size);
}
if (from as usize % ERASE_SIZE) != 0 || (to as usize % ERASE_SIZE) != 0 {
return Err(Error::Unaligned);
}
self.clear_all_err();
unsafe {
family::unlock();
let res = family::blocking_erase(from, to);
family::lock();
res
}
}
fn clear_all_err(&mut self) {
unsafe { family::clear_all_err() };
}
}
impl Drop for Flash<'_> {
fn drop(&mut self) {
unsafe { family::lock() };
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)] #[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -97,10 +75,6 @@ pub enum Error {
Parallelism, Parallelism,
} }
impl<'d> ErrorType for Flash<'d> {
type Error = Error;
}
impl NorFlashError for Error { impl NorFlashError for Error {
fn kind(&self) -> NorFlashErrorKind { fn kind(&self) -> NorFlashErrorKind {
match self { match self {
@ -110,28 +84,3 @@ impl NorFlashError for Error {
} }
} }
} }
impl<'d> ReadNorFlash for Flash<'d> {
const READ_SIZE: usize = WRITE_SIZE;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(offset, bytes)
}
fn capacity(&self) -> usize {
FLASH_SIZE
}
}
impl<'d> NorFlash for Flash<'d> {
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.blocking_erase(from, to)
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(offset, bytes)
}
}

View File

@ -0,0 +1,29 @@
#![allow(unused)]
use super::{Error, FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE};
pub const fn get_flash_regions() -> &'static [&'static FlashRegion] {
&FLASH_REGIONS
}
pub(crate) unsafe fn lock() {
unimplemented!();
}
pub(crate) unsafe fn unlock() {
unimplemented!();
}
pub(crate) unsafe fn begin_write() {
unimplemented!();
}
pub(crate) unsafe fn end_write() {
unimplemented!();
}
pub(crate) unsafe fn blocking_write(_start_address: u32, _buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
unimplemented!();
}
pub(crate) unsafe fn blocking_erase_sector(_sector: &FlashSector) -> Result<(), Error> {
unimplemented!();
}
pub(crate) unsafe fn clear_all_err() {
unimplemented!();
}

View File

@ -28,64 +28,64 @@ impl<'d, T: Instance, TXDMA, RXDMA> TimeoutI2c<'d, T, TXDMA, RXDMA> {
} }
/// Blocking read with a custom timeout /// Blocking read with a custom timeout
pub fn blocking_read_timeout(&mut self, addr: u8, buffer: &mut [u8], timeout: Duration) -> Result<(), Error> { pub fn blocking_read_timeout(&mut self, addr: u8, read: &mut [u8], timeout: Duration) -> Result<(), Error> {
self.i2c.blocking_read_timeout(addr, buffer, timeout_fn(timeout)) self.i2c.blocking_read_timeout(addr, read, timeout_fn(timeout))
} }
/// Blocking read with default timeout, provided in [`TimeoutI2c::new()`] /// Blocking read with default timeout, provided in [`TimeoutI2c::new()`]
pub fn blocking_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(addr, buffer, self.timeout) self.blocking_read_timeout(addr, read, self.timeout)
} }
/// Blocking write with a custom timeout /// Blocking write with a custom timeout
pub fn blocking_write_timeout(&mut self, addr: u8, bytes: &[u8], timeout: Duration) -> Result<(), Error> { pub fn blocking_write_timeout(&mut self, addr: u8, write: &[u8], timeout: Duration) -> Result<(), Error> {
self.i2c.blocking_write_timeout(addr, bytes, timeout_fn(timeout)) self.i2c.blocking_write_timeout(addr, write, timeout_fn(timeout))
} }
/// Blocking write with default timeout, provided in [`TimeoutI2c::new()`] /// Blocking write with default timeout, provided in [`TimeoutI2c::new()`]
pub fn blocking_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, addr: u8, write: &[u8]) -> Result<(), Error> {
self.blocking_write_timeout(addr, bytes, self.timeout) self.blocking_write_timeout(addr, write, self.timeout)
} }
/// Blocking write-read with a custom timeout /// Blocking write-read with a custom timeout
pub fn blocking_write_read_timeout( pub fn blocking_write_read_timeout(
&mut self, &mut self,
addr: u8, addr: u8,
bytes: &[u8], write: &[u8],
buffer: &mut [u8], read: &mut [u8],
timeout: Duration, timeout: Duration,
) -> Result<(), Error> { ) -> Result<(), Error> {
self.i2c self.i2c
.blocking_write_read_timeout(addr, bytes, buffer, timeout_fn(timeout)) .blocking_write_read_timeout(addr, write, read, timeout_fn(timeout))
} }
/// Blocking write-read with default timeout, provided in [`TimeoutI2c::new()`] /// Blocking write-read with default timeout, provided in [`TimeoutI2c::new()`]
pub fn blocking_write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, bytes, buffer, self.timeout) self.blocking_write_read_timeout(addr, write, read, self.timeout)
} }
} }
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::Read for TimeoutI2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::Read for TimeoutI2c<'d, T, TXDMA, RXDMA> {
type Error = Error; type Error = Error;
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, buffer) self.blocking_read(addr, read)
} }
} }
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::Write for TimeoutI2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::Write for TimeoutI2c<'d, T, TXDMA, RXDMA> {
type Error = Error; type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, bytes) self.blocking_write(addr, write)
} }
} }
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::WriteRead for TimeoutI2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_02::blocking::i2c::WriteRead for TimeoutI2c<'d, T, TXDMA, RXDMA> {
type Error = Error; type Error = Error;
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, bytes, buffer) self.blocking_write_read(addr, write, read)
} }
} }
@ -98,45 +98,24 @@ mod eh1 {
} }
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::I2c for TimeoutI2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::I2c for TimeoutI2c<'d, T, TXDMA, RXDMA> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer) self.blocking_read(address, read)
} }
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer) self.blocking_write(address, write)
} }
fn write_iter<B>(&mut self, _address: u8, _bytes: B) -> Result<(), Self::Error> fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
where self.blocking_write_read(address, write, read)
B: IntoIterator<Item = u8>,
{
todo!();
} }
fn write_iter_read<B>(&mut self, _address: u8, _bytes: B, _buffer: &mut [u8]) -> Result<(), Self::Error> fn transaction(
where
B: IntoIterator<Item = u8>,
{
todo!();
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self, &mut self,
_address: u8, _address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'a>], _operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
todo!(); todo!();
} }
fn transaction_iter<'a, O>(&mut self, _address: u8, _operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
{
todo!();
}
} }
} }

View File

@ -307,18 +307,18 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
pub fn blocking_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(addr, buffer, || Ok(())) self.blocking_read_timeout(addr, read, || Ok(()))
} }
pub fn blocking_write_timeout( pub fn blocking_write_timeout(
&mut self, &mut self,
addr: u8, addr: u8,
bytes: &[u8], write: &[u8],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
unsafe { unsafe {
self.write_bytes(addr, bytes, &check_timeout)?; self.write_bytes(addr, write, &check_timeout)?;
// Send a STOP condition // Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true)); T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit. // Wait for STOP condition to transmit.
@ -331,49 +331,49 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
pub fn blocking_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, addr: u8, write: &[u8]) -> Result<(), Error> {
self.blocking_write_timeout(addr, bytes, || Ok(())) self.blocking_write_timeout(addr, write, || Ok(()))
} }
pub fn blocking_write_read_timeout( pub fn blocking_write_read_timeout(
&mut self, &mut self,
addr: u8, addr: u8,
bytes: &[u8], write: &[u8],
buffer: &mut [u8], read: &mut [u8],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
unsafe { self.write_bytes(addr, bytes, &check_timeout)? }; unsafe { self.write_bytes(addr, write, &check_timeout)? };
self.blocking_read_timeout(addr, buffer, &check_timeout)?; self.blocking_read_timeout(addr, read, &check_timeout)?;
Ok(()) Ok(())
} }
pub fn blocking_write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, bytes, buffer, || Ok(())) self.blocking_write_read_timeout(addr, write, read, || Ok(()))
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error; type Error = Error;
fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, buffer) self.blocking_read(addr, read)
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error; type Error = Error;
fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, bytes) self.blocking_write(addr, write)
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error; type Error = Error;
fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, bytes, buffer) self.blocking_write_read(addr, write, read)
} }
} }
@ -402,46 +402,25 @@ mod eh1 {
} }
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer) self.blocking_read(address, read)
} }
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer) self.blocking_write(address, write)
} }
fn write_iter<B>(&mut self, _address: u8, _bytes: B) -> Result<(), Self::Error> fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
where self.blocking_write_read(address, write, read)
B: IntoIterator<Item = u8>,
{
todo!();
} }
fn write_iter_read<B>(&mut self, _address: u8, _bytes: B, _buffer: &mut [u8]) -> Result<(), Self::Error> fn transaction(
where
B: IntoIterator<Item = u8>,
{
todo!();
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self, &mut self,
_address: u8, _address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'a>], _operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
todo!(); todo!();
} }
fn transaction_iter<'a, O>(&mut self, _address: u8, _operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
{
todo!();
}
} }
} }

View File

@ -262,7 +262,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if T::regs().isr().read().txis() { if T::regs().isr().read().txis() {
T::regs().txdr().write(|w| w.set_txdata(0)); T::regs().txdr().write(|w| w.set_txdata(0));
} }
if T::regs().isr().read().txe() { if !T::regs().isr().read().txe() {
T::regs().isr().modify(|w| w.set_txe(true)) T::regs().isr().modify(|w| w.set_txe(true))
} }
} }
@ -345,12 +345,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn read_internal( fn read_internal(
&mut self, &mut self,
address: u8, address: u8,
buffer: &mut [u8], read: &mut [u8],
restart: bool, restart: bool,
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
let completed_chunks = buffer.len() / 255; let completed_chunks = read.len() / 255;
let total_chunks = if completed_chunks * 255 == buffer.len() { let total_chunks = if completed_chunks * 255 == read.len() {
completed_chunks completed_chunks
} else { } else {
completed_chunks + 1 completed_chunks + 1
@ -360,7 +360,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
unsafe { unsafe {
Self::master_read( Self::master_read(
address, address,
buffer.len().min(255), read.len().min(255),
Stop::Automatic, Stop::Automatic,
last_chunk_idx != 0, last_chunk_idx != 0,
restart, restart,
@ -368,7 +368,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
)?; )?;
} }
for (number, chunk) in buffer.chunks_mut(255).enumerate() { for (number, chunk) in read.chunks_mut(255).enumerate() {
if number != 0 { if number != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
@ -391,12 +391,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn write_internal( fn write_internal(
&mut self, &mut self,
address: u8, address: u8,
bytes: &[u8], write: &[u8],
send_stop: bool, send_stop: bool,
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
let completed_chunks = bytes.len() / 255; let completed_chunks = write.len() / 255;
let total_chunks = if completed_chunks * 255 == bytes.len() { let total_chunks = if completed_chunks * 255 == write.len() {
completed_chunks completed_chunks
} else { } else {
completed_chunks + 1 completed_chunks + 1
@ -410,14 +410,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
unsafe { unsafe {
Self::master_write( Self::master_write(
address, address,
bytes.len().min(255), write.len().min(255),
Stop::Software, Stop::Software,
last_chunk_idx != 0, last_chunk_idx != 0,
&check_timeout, &check_timeout,
)?; )?;
} }
for (number, chunk) in bytes.chunks(255).enumerate() { for (number, chunk) in write.chunks(255).enumerate() {
if number != 0 { if number != 0 {
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
@ -448,7 +448,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
async fn write_dma_internal( async fn write_dma_internal(
&mut self, &mut self,
address: u8, address: u8,
bytes: &[u8], write: &[u8],
first_slice: bool, first_slice: bool,
last_slice: bool, last_slice: bool,
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
@ -456,7 +456,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
let total_len = bytes.len(); let total_len = write.len();
let completed_chunks = total_len / 255; let completed_chunks = total_len / 255;
let total_chunks = if completed_chunks * 255 == total_len { let total_chunks = if completed_chunks * 255 == total_len {
completed_chunks completed_chunks
@ -476,7 +476,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let ch = &mut self.tx_dma; let ch = &mut self.tx_dma;
let request = ch.request(); let request = ch.request();
crate::dma::write(ch, request, bytes, dst) crate::dma::write(ch, request, write, dst)
}; };
let state = T::state(); let state = T::state();
@ -641,25 +641,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// ========================= // =========================
// Async public API // Async public API
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
if bytes.is_empty() { if write.is_empty() {
self.write_internal(address, bytes, true, || Ok(())) self.write_internal(address, write, true, || Ok(()))
} else { } else {
self.write_dma_internal(address, bytes, true, true, || Ok(())).await self.write_dma_internal(address, write, true, true, || Ok(())).await
} }
} }
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
{ {
if bytes.is_empty() { if write.is_empty() {
return Err(Error::ZeroLengthTransfer); return Err(Error::ZeroLengthTransfer);
} }
let mut iter = bytes.iter(); let mut iter = write.iter();
let mut first = true; let mut first = true;
let mut current = iter.next(); let mut current = iter.next();
@ -685,21 +685,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where where
TXDMA: super::TxDma<T>, TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>, RXDMA: super::RxDma<T>,
{ {
if bytes.is_empty() { if write.is_empty() {
self.write_internal(address, bytes, false, || Ok(()))?; self.write_internal(address, write, false, || Ok(()))?;
} else { } else {
self.write_dma_internal(address, bytes, true, true, || Ok(())).await?; self.write_dma_internal(address, write, true, true, || Ok(())).await?;
} }
if buffer.is_empty() { if read.is_empty() {
self.read_internal(address, buffer, true, || Ok(()))?; self.read_internal(address, read, true, || Ok(()))?;
} else { } else {
self.read_dma_internal(address, buffer, true, || Ok(())).await?; self.read_dma_internal(address, read, true, || Ok(())).await?;
} }
Ok(()) Ok(())
@ -711,57 +711,57 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub fn blocking_read_timeout( pub fn blocking_read_timeout(
&mut self, &mut self,
address: u8, address: u8,
buffer: &mut [u8], read: &mut [u8],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
self.read_internal(address, buffer, false, &check_timeout) self.read_internal(address, read, false, &check_timeout)
// Automatic Stop // Automatic Stop
} }
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(address, buffer, || Ok(())) self.blocking_read_timeout(address, read, || Ok(()))
} }
pub fn blocking_write_timeout( pub fn blocking_write_timeout(
&mut self, &mut self,
address: u8, address: u8,
bytes: &[u8], write: &[u8],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
self.write_internal(address, bytes, true, &check_timeout) self.write_internal(address, write, true, &check_timeout)
} }
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> {
self.blocking_write_timeout(address, bytes, || Ok(())) self.blocking_write_timeout(address, write, || Ok(()))
} }
pub fn blocking_write_read_timeout( pub fn blocking_write_read_timeout(
&mut self, &mut self,
address: u8, address: u8,
bytes: &[u8], write: &[u8],
buffer: &mut [u8], read: &mut [u8],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
self.write_internal(address, bytes, false, &check_timeout)?; self.write_internal(address, write, false, &check_timeout)?;
self.read_internal(address, buffer, true, &check_timeout) self.read_internal(address, read, true, &check_timeout)
// Automatic Stop // Automatic Stop
} }
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(address, bytes, buffer, || Ok(())) self.blocking_write_read_timeout(address, write, read, || Ok(()))
} }
pub fn blocking_write_vectored_timeout( pub fn blocking_write_vectored_timeout(
&mut self, &mut self,
address: u8, address: u8,
bytes: &[&[u8]], write: &[&[u8]],
check_timeout: impl Fn() -> Result<(), Error>, check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> { ) -> Result<(), Error> {
if bytes.is_empty() { if write.is_empty() {
return Err(Error::ZeroLengthTransfer); return Err(Error::ZeroLengthTransfer);
} }
let first_length = bytes[0].len(); let first_length = write[0].len();
let last_slice_index = bytes.len() - 1; let last_slice_index = write.len() - 1;
// NOTE(unsafe) We have &mut self // NOTE(unsafe) We have &mut self
unsafe { unsafe {
@ -774,7 +774,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
)?; )?;
} }
for (idx, slice) in bytes.iter().enumerate() { for (idx, slice) in write.iter().enumerate() {
let slice_len = slice.len(); let slice_len = slice.len();
let completed_chunks = slice_len / 255; let completed_chunks = slice_len / 255;
let total_chunks = if completed_chunks * 255 == slice_len { let total_chunks = if completed_chunks * 255 == slice_len {
@ -828,8 +828,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> { pub fn blocking_write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error> {
self.blocking_write_vectored_timeout(address, bytes, || Ok(())) self.blocking_write_vectored_timeout(address, write, || Ok(()))
} }
} }
@ -847,16 +847,16 @@ mod eh02 {
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error; type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, bytes) self.blocking_write(address, write)
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> { impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error; type Error = Error;
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, bytes, buffer) self.blocking_write_read(address, write, read)
} }
} }
} }
@ -1010,46 +1010,25 @@ mod eh1 {
} }
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> { impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer) self.blocking_read(address, read)
} }
fn write(&mut self, address: u8, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, buffer) self.blocking_write(address, write)
} }
fn write_iter<B>(&mut self, _address: u8, _bytes: B) -> Result<(), Self::Error> fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
where self.blocking_write_read(address, write, read)
B: IntoIterator<Item = u8>,
{
todo!();
} }
fn write_iter_read<B>(&mut self, _address: u8, _bytes: B, _buffer: &mut [u8]) -> Result<(), Self::Error> fn transaction(
where
B: IntoIterator<Item = u8>,
{
todo!();
}
fn write_read(&mut self, address: u8, wr_buffer: &[u8], rd_buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, wr_buffer, rd_buffer)
}
fn transaction<'a>(
&mut self, &mut self,
_address: u8, _address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'a>], _operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
todo!(); todo!();
} }
fn transaction_iter<'a, O>(&mut self, _address: u8, _operations: O) -> Result<(), Self::Error>
where
O: IntoIterator<Item = embedded_hal_1::i2c::Operation<'a>>,
{
todo!();
}
} }
} }
@ -1059,27 +1038,22 @@ mod eha {
use super::*; use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> { impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read<'a>(&'a mut self, address: u8, read: &'a mut [u8]) -> Result<(), Self::Error> { async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await self.read(address, read).await
} }
async fn write<'a>(&'a mut self, address: u8, write: &'a [u8]) -> Result<(), Self::Error> { async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await self.write(address, write).await
} }
async fn write_read<'a>( async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
&'a mut self,
address: u8,
write: &'a [u8],
read: &'a mut [u8],
) -> Result<(), Self::Error> {
self.write_read(address, write, read).await self.write_read(address, write, read).await
} }
async fn transaction<'a, 'b>( async fn transaction(
&'a mut self, &mut self,
address: u8, address: u8,
operations: &'a mut [embedded_hal_1::i2c::Operation<'b>], operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> { ) -> Result<(), Self::Error> {
let _ = address; let _ = address;
let _ = operations; let _ = operations;

View File

@ -43,9 +43,6 @@ pub mod i2c;
#[cfg(crc)] #[cfg(crc)]
pub mod crc; pub mod crc;
#[cfg(any(
flash_l0, flash_l1, flash_wl, flash_wb, flash_l4, flash_f3, flash_f4, flash_f7, flash_h7
))]
pub mod flash; pub mod flash;
pub mod pwm; pub mod pwm;
#[cfg(quadspi)] #[cfg(quadspi)]
@ -56,6 +53,8 @@ pub mod rng;
pub mod sdmmc; pub mod sdmmc;
#[cfg(spi)] #[cfg(spi)]
pub mod spi; pub mod spi;
#[cfg(stm32wl)]
pub mod subghz;
#[cfg(usart)] #[cfg(usart)]
pub mod usart; pub mod usart;
#[cfg(all(usb, feature = "time"))] #[cfg(all(usb, feature = "time"))]
@ -65,9 +64,6 @@ pub mod usb_otg;
#[cfg(iwdg)] #[cfg(iwdg)]
pub mod wdg; pub mod wdg;
#[cfg(feature = "subghz")]
pub mod subghz;
// This must go last, so that it sees all the impl_foo! macros defined earlier. // This must go last, so that it sees all the impl_foo! macros defined earlier.
pub(crate) mod _generated { pub(crate) mod _generated {
#![allow(dead_code)] #![allow(dead_code)]

View File

@ -0,0 +1,124 @@
use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef};
pub use stm32_metapac::timer::vals::Ckd;
use super::simple_pwm::*;
use super::*;
#[allow(unused_imports)]
use crate::gpio::sealed::{AFType, Pin};
use crate::gpio::AnyPin;
use crate::time::Hertz;
use crate::Peripheral;
pub struct ComplementaryPwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
macro_rules! complementary_channel_impl {
($new_chx:ident, $channel:ident, $pin_trait:ident, $complementary_pin_trait:ident) => {
impl<'d, Perip: CaptureCompare16bitInstance> ComplementaryPwmPin<'d, Perip, $channel> {
pub fn $new_chx(pin: impl Peripheral<P = impl $complementary_pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| unsafe {
pin.set_low();
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
#[cfg(gpio_v2)]
pin.set_speed(crate::gpio::Speed::VeryHigh);
});
ComplementaryPwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
};
}
complementary_channel_impl!(new_ch1, Ch1, Channel1Pin, Channel1ComplementaryPin);
complementary_channel_impl!(new_ch2, Ch2, Channel2Pin, Channel2ComplementaryPin);
complementary_channel_impl!(new_ch3, Ch3, Channel3Pin, Channel3ComplementaryPin);
complementary_channel_impl!(new_ch4, Ch4, Channel4Pin, Channel4ComplementaryPin);
pub struct ComplementaryPwm<'d, T> {
inner: PeripheralRef<'d, T>,
}
impl<'d, T: ComplementaryCaptureCompare16bitInstance> ComplementaryPwm<'d, T> {
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_ch1: Option<PwmPin<'d, T, Ch1>>,
_ch1n: Option<ComplementaryPwmPin<'d, T, Ch1>>,
_ch2: Option<PwmPin<'d, T, Ch2>>,
_ch2n: Option<ComplementaryPwmPin<'d, T, Ch2>>,
_ch3: Option<PwmPin<'d, T, Ch3>>,
_ch3n: Option<ComplementaryPwmPin<'d, T, Ch3>>,
_ch4: Option<PwmPin<'d, T, Ch4>>,
_ch4n: Option<ComplementaryPwmPin<'d, T, Ch4>>,
freq: Hertz,
) -> Self {
Self::new_inner(tim, freq)
}
fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz) -> Self {
into_ref!(tim);
T::enable();
<T as crate::rcc::sealed::RccPeripheral>::reset();
let mut this = Self { inner: tim };
this.inner.set_frequency(freq);
this.inner.start();
unsafe {
this.inner.enable_outputs(true);
this.inner
.set_output_compare_mode(Channel::Ch1, OutputCompareMode::PwmMode1);
this.inner
.set_output_compare_mode(Channel::Ch2, OutputCompareMode::PwmMode1);
this.inner
.set_output_compare_mode(Channel::Ch3, OutputCompareMode::PwmMode1);
this.inner
.set_output_compare_mode(Channel::Ch4, OutputCompareMode::PwmMode1);
}
this
}
pub fn enable(&mut self, channel: Channel) {
unsafe {
self.inner.enable_channel(channel, true);
self.inner.enable_complementary_channel(channel, true);
}
}
pub fn disable(&mut self, channel: Channel) {
unsafe {
self.inner.enable_complementary_channel(channel, false);
self.inner.enable_channel(channel, false);
}
}
pub fn set_freq(&mut self, freq: Hertz) {
self.inner.set_frequency(freq);
}
pub fn get_max_duty(&self) -> u16 {
unsafe { self.inner.get_max_compare_value() }
}
pub fn set_duty(&mut self, channel: Channel, duty: u16) {
assert!(duty < self.get_max_duty());
unsafe { self.inner.set_compare_value(channel, duty) }
}
pub fn set_dead_time_clock_division(&mut self, value: Ckd) {
unsafe { self.inner.set_dead_time_clock_division(value) }
}
pub fn set_dead_time_value(&mut self, value: u8) {
unsafe { self.inner.set_dead_time_value(value) }
}
}

View File

@ -1,5 +1,8 @@
pub mod complementary_pwm;
pub mod simple_pwm; pub mod simple_pwm;
use stm32_metapac::timer::vals::Ckd;
#[cfg(feature = "unstable-pac")] #[cfg(feature = "unstable-pac")]
pub mod low_level { pub mod low_level {
pub use super::sealed::*; pub use super::sealed::*;
@ -67,6 +70,14 @@ pub(crate) mod sealed {
unsafe fn get_max_compare_value(&self) -> u16; unsafe fn get_max_compare_value(&self) -> u16;
} }
pub trait ComplementaryCaptureCompare16bitInstance: CaptureCompare16bitInstance {
unsafe fn set_dead_time_clock_division(&mut self, value: Ckd);
unsafe fn set_dead_time_value(&mut self, value: u8);
unsafe fn enable_complementary_channel(&mut self, channel: Channel, enable: bool);
}
pub trait CaptureCompare32bitInstance: crate::timer::sealed::GeneralPurpose32bitInstance { pub trait CaptureCompare32bitInstance: crate::timer::sealed::GeneralPurpose32bitInstance {
unsafe fn set_output_compare_mode(&mut self, channel: Channel, mode: OutputCompareMode); unsafe fn set_output_compare_mode(&mut self, channel: Channel, mode: OutputCompareMode);
@ -82,6 +93,12 @@ pub trait CaptureCompare16bitInstance:
sealed::CaptureCompare16bitInstance + crate::timer::GeneralPurpose16bitInstance + 'static sealed::CaptureCompare16bitInstance + crate::timer::GeneralPurpose16bitInstance + 'static
{ {
} }
pub trait ComplementaryCaptureCompare16bitInstance:
sealed::ComplementaryCaptureCompare16bitInstance + crate::timer::AdvancedControlInstance + 'static
{
}
pub trait CaptureCompare32bitInstance: pub trait CaptureCompare32bitInstance:
sealed::CaptureCompare32bitInstance + CaptureCompare16bitInstance + crate::timer::GeneralPurpose32bitInstance + 'static sealed::CaptureCompare32bitInstance + CaptureCompare16bitInstance + crate::timer::GeneralPurpose32bitInstance + 'static
{ {
@ -209,6 +226,29 @@ foreach_interrupt! {
impl CaptureCompare16bitInstance for crate::peripherals::$inst { impl CaptureCompare16bitInstance for crate::peripherals::$inst {
} }
impl crate::pwm::sealed::ComplementaryCaptureCompare16bitInstance for crate::peripherals::$inst {
unsafe fn set_dead_time_clock_division(&mut self, value: Ckd) {
use crate::timer::sealed::AdvancedControlInstance;
Self::regs_advanced().cr1().modify(|w| w.set_ckd(value));
}
unsafe fn set_dead_time_value(&mut self, value: u8) {
use crate::timer::sealed::AdvancedControlInstance;
Self::regs_advanced().bdtr().modify(|w| w.set_dtg(value));
}
unsafe fn enable_complementary_channel(&mut self, channel: Channel, enable: bool) {
use crate::timer::sealed::AdvancedControlInstance;
Self::regs_advanced()
.ccer()
.modify(|w| w.set_ccne(channel.raw(), enable));
}
}
impl ComplementaryCaptureCompare16bitInstance for crate::peripherals::$inst {
}
}; };
} }

View File

@ -1,8 +1,16 @@
use core::marker::PhantomData;
use embassy_hal_common::into_ref;
use stm32_metapac::rcc::vals::{Mco1, Mco2, Mcopre};
use super::sealed::RccPeripheral; use super::sealed::RccPeripheral;
use crate::gpio::sealed::AFType;
use crate::gpio::Speed;
use crate::pac::rcc::vals::{Hpre, Ppre, Sw}; use crate::pac::rcc::vals::{Hpre, Ppre, Sw};
use crate::pac::{FLASH, PWR, RCC}; use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks}; use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz; use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed /// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000); pub const HSI_FREQ: Hertz = Hertz(16_000_000);
@ -96,6 +104,164 @@ unsafe fn setup_pll(pllsrcclk: u32, use_hse: bool, pllsysclk: Option<u32>, pll48
} }
} }
pub enum McoClock {
DIV1,
DIV2,
DIV3,
DIV4,
DIV5,
}
impl McoClock {
fn into_raw(&self) -> Mcopre {
match self {
McoClock::DIV1 => Mcopre::DIV1,
McoClock::DIV2 => Mcopre::DIV2,
McoClock::DIV3 => Mcopre::DIV3,
McoClock::DIV4 => Mcopre::DIV4,
McoClock::DIV5 => Mcopre::DIV5,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco1Source {
Hsi,
Lse,
Hse,
Pll,
}
impl Default for Mco1Source {
fn default() -> Self {
Self::Hsi
}
}
pub trait McoSource {
type Raw;
fn into_raw(&self) -> Self::Raw;
}
impl McoSource for Mco1Source {
type Raw = Mco1;
fn into_raw(&self) -> Self::Raw {
match self {
Mco1Source::Hsi => Mco1::HSI,
Mco1Source::Lse => Mco1::LSE,
Mco1Source::Hse => Mco1::HSE,
Mco1Source::Pll => Mco1::PLL,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco2Source {
SysClk,
Plli2s,
Hse,
Pll,
}
impl Default for Mco2Source {
fn default() -> Self {
Self::SysClk
}
}
impl McoSource for Mco2Source {
type Raw = Mco2;
fn into_raw(&self) -> Self::Raw {
match self {
Mco2Source::SysClk => Mco2::SYSCLK,
Mco2Source::Plli2s => Mco2::PLLI2S,
Mco2Source::Hse => Mco2::HSE,
Mco2Source::Pll => Mco2::PLL,
}
}
}
pub(crate) mod sealed {
use stm32_metapac::rcc::vals::Mcopre;
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
impl sealed::McoInstance for peripherals::MCO1 {
type Source = Mco1;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mco1(source);
w.set_mco1pre(prescaler);
});
match source {
Mco1::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
}
Mco1::HSI => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO1 {}
impl sealed::McoInstance for peripherals::MCO2 {
type Source = Mco2;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mco2(source);
w.set_mco2pre(prescaler);
});
match source {
Mco2::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
}
#[cfg(not(stm32f410))]
Mco2::PLLI2S => {
RCC.cr().modify(|w| w.set_plli2son(true));
while !RCC.cr().read().plli2srdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO2 {}
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
pin: impl Peripheral<P = impl McoPin<T>> + 'd,
source: impl McoSource<Raw = T::Source>,
prescaler: McoClock,
) -> Self {
into_ref!(pin);
critical_section::with(|_| unsafe {
T::apply_clock_settings(source.into_raw(), prescaler.into_raw());
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
pin.set_speed(Speed::VeryHigh);
});
Self { phantom: PhantomData }
}
}
unsafe fn flash_setup(sysclk: u32) { unsafe fn flash_setup(sysclk: u32) {
use crate::pac::flash::vals::Latency; use crate::pac::flash::vals::Latency;

606
embassy-stm32/src/rcc/h5.rs Normal file
View File

@ -0,0 +1,606 @@
use core::marker::PhantomData;
use stm32_metapac::rcc::vals::{Hpre, Ppre, Timpre};
use crate::pac::pwr::vals::Vos;
use crate::pac::rcc::vals::{Hseext, Hsidiv, Mco1, Mco2, Pllrge, Pllsrc, Pllvcosel, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(64_000_000);
/// CSI speed
pub const CSI_FREQ: Hertz = Hertz(4_000_000);
/// HSI48 speed
pub const HSI48_FREQ: Hertz = Hertz(48_000_000);
/// LSI speed
pub const LSI_FREQ: Hertz = Hertz(32_000);
const VCO_MIN: u32 = 150_000_000;
const VCO_MAX: u32 = 420_000_000;
const VCO_WIDE_MIN: u32 = 128_000_000;
const VCO_WIDE_MAX: u32 = 560_000_000;
/// Voltage Scale
///
/// Represents the voltage range feeding the CPU core. The maximum core
/// clock frequency depends on this value.
#[derive(Copy, Clone, PartialEq)]
pub enum VoltageScale {
/// VOS 0 range VCORE 1.30V - 1.40V
Scale0,
/// VOS 1 range VCORE 1.15V - 1.26V
Scale1,
/// VOS 2 range VCORE 1.05V - 1.15V
Scale2,
/// VOS 3 range VCORE 0.95V - 1.05V
Scale3,
}
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1, HSEEXT=0)
BypassAnalog,
/// external digital clock (full swing) (HSEBYP=1, HSEEXT=1)
BypassDigital,
}
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
pub enum Hsi {
/// 64Mhz
Mhz64,
/// 32Mhz (divided by 2)
Mhz32,
/// 16Mhz (divided by 4)
Mhz16,
/// 8Mhz (divided by 8)
Mhz8,
}
pub enum Sysclk {
/// HSI selected as sysclk
HSI,
/// HSE selected as sysclk
HSE,
/// CSI selected as sysclk
CSI,
/// PLL1_P selected as sysclk
Pll1P,
}
pub enum PllSource {
Hsi,
Csi,
Hse,
}
pub struct Pll {
/// Source clock selection.
pub source: PllSource,
/// PLL pre-divider (DIVM). Must be between 1 and 63.
pub prediv: u8,
/// PLL multiplication factor. Must be between 4 and 512.
pub mul: u16,
/// PLL P division factor. If None, PLL P output is disabled. Must be between 1 and 128.
/// On PLL1, it must be even (in particular, it cannot be 1.)
pub divp: Option<u16>,
/// PLL Q division factor. If None, PLL Q output is disabled. Must be between 1 and 128.
pub divq: Option<u16>,
/// PLL R division factor. If None, PLL R output is disabled. Must be between 1 and 128.
pub divr: Option<u16>,
}
/// AHB prescaler
#[derive(Clone, Copy, PartialEq)]
pub enum AHBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
Div64,
Div128,
Div256,
Div512,
}
impl AHBPrescaler {
fn div(&self, clk: Hertz) -> Hertz {
match self {
Self::NotDivided => clk,
Self::Div2 => clk / 2u32,
Self::Div4 => clk / 4u32,
Self::Div8 => clk / 8u32,
Self::Div16 => clk / 16u32,
Self::Div64 => clk / 64u32,
Self::Div128 => clk / 128u32,
Self::Div256 => clk / 256u32,
Self::Div512 => clk / 512u32,
}
}
}
/// APB prescaler
#[derive(Clone, Copy)]
pub enum APBPrescaler {
NotDivided,
Div2,
Div4,
Div8,
Div16,
}
impl APBPrescaler {
fn div(&self, clk: Hertz) -> Hertz {
match self {
Self::NotDivided => clk,
Self::Div2 => clk / 2u32,
Self::Div4 => clk / 4u32,
Self::Div8 => clk / 8u32,
Self::Div16 => clk / 16u32,
}
}
fn div_tim(&self, clk: Hertz, tim: TimerPrescaler) -> Hertz {
match (tim, self) {
// The timers kernel clock is equal to rcc_hclk1 if PPRE1 or PPRE2 corresponds to a
// division by 1 or 2, else it is equal to 2 x Frcc_pclk1 or 2 x Frcc_pclk2
(TimerPrescaler::DefaultX2, Self::NotDivided) => clk,
(TimerPrescaler::DefaultX2, Self::Div2) => clk,
(TimerPrescaler::DefaultX2, Self::Div4) => clk / 2u32,
(TimerPrescaler::DefaultX2, Self::Div8) => clk / 4u32,
(TimerPrescaler::DefaultX2, Self::Div16) => clk / 8u32,
// The timers kernel clock is equal to 2 x Frcc_pclk1 or 2 x Frcc_pclk2 if PPRE1 or PPRE2
// corresponds to a division by 1, 2 or 4, else it is equal to 4 x Frcc_pclk1 or 4 x Frcc_pclk2
// this makes NO SENSE and is different than in the H7. Mistake in the RM??
(TimerPrescaler::DefaultX4, Self::NotDivided) => clk * 2u32,
(TimerPrescaler::DefaultX4, Self::Div2) => clk,
(TimerPrescaler::DefaultX4, Self::Div4) => clk / 2u32,
(TimerPrescaler::DefaultX4, Self::Div8) => clk / 2u32,
(TimerPrescaler::DefaultX4, Self::Div16) => clk / 4u32,
}
}
}
/// APB prescaler
#[derive(Clone, Copy)]
pub enum TimerPrescaler {
DefaultX2,
DefaultX4,
}
impl From<TimerPrescaler> for Timpre {
fn from(value: TimerPrescaler) -> Self {
match value {
TimerPrescaler::DefaultX2 => Timpre::DEFAULTX2,
TimerPrescaler::DefaultX4 => Timpre::DEFAULTX4,
}
}
}
impl From<APBPrescaler> for Ppre {
fn from(val: APBPrescaler) -> Ppre {
match val {
APBPrescaler::NotDivided => Ppre::DIV1,
APBPrescaler::Div2 => Ppre::DIV2,
APBPrescaler::Div4 => Ppre::DIV4,
APBPrescaler::Div8 => Ppre::DIV8,
APBPrescaler::Div16 => Ppre::DIV16,
}
}
}
impl From<AHBPrescaler> for Hpre {
fn from(val: AHBPrescaler) -> Hpre {
match val {
AHBPrescaler::NotDivided => Hpre::DIV1,
AHBPrescaler::Div2 => Hpre::DIV2,
AHBPrescaler::Div4 => Hpre::DIV4,
AHBPrescaler::Div8 => Hpre::DIV8,
AHBPrescaler::Div16 => Hpre::DIV16,
AHBPrescaler::Div64 => Hpre::DIV64,
AHBPrescaler::Div128 => Hpre::DIV128,
AHBPrescaler::Div256 => Hpre::DIV256,
AHBPrescaler::Div512 => Hpre::DIV512,
}
}
}
/// Configuration of the core clocks
#[non_exhaustive]
pub struct Config {
pub hsi: Option<Hsi>,
pub hse: Option<Hse>,
pub csi: bool,
pub hsi48: bool,
pub sys: Sysclk,
pub pll1: Option<Pll>,
pub pll2: Option<Pll>,
#[cfg(rcc_h5)]
pub pll3: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub apb3_pre: APBPrescaler,
pub timer_prescaler: TimerPrescaler,
pub voltage_scale: VoltageScale,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: Some(Hsi::Mhz64),
hse: None,
csi: false,
hsi48: false,
sys: Sysclk::HSI,
pll1: None,
pll2: None,
#[cfg(rcc_h5)]
pll3: None,
ahb_pre: AHBPrescaler::NotDivided,
apb1_pre: APBPrescaler::NotDivided,
apb2_pre: APBPrescaler::NotDivided,
apb3_pre: APBPrescaler::NotDivided,
timer_prescaler: TimerPrescaler::DefaultX2,
voltage_scale: VoltageScale::Scale3,
}
}
}
pub(crate) mod sealed {
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: u8);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
macro_rules! impl_peri {
($peri:ident, $source:ident, $set_source:ident, $set_prescaler:ident) => {
impl sealed::McoInstance for peripherals::$peri {
type Source = $source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: u8) {
RCC.cfgr().modify(|w| {
w.$set_source(source);
w.$set_prescaler(prescaler);
});
}
}
impl McoInstance for peripherals::$peri {}
};
}
impl_peri!(MCO1, Mco1, set_mco1, set_mco1pre);
impl_peri!(MCO2, Mco2, set_mco2, set_mco2pre);
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
_pin: impl Peripheral<P = impl McoPin<T>> + 'd,
_source: T::Source,
) -> Self {
todo!();
}
}
pub(crate) unsafe fn init(config: Config) {
let (vos, max_clk) = match config.voltage_scale {
VoltageScale::Scale0 => (Vos::SCALE0, Hertz(250_000_000)),
VoltageScale::Scale1 => (Vos::SCALE1, Hertz(200_000_000)),
VoltageScale::Scale2 => (Vos::SCALE2, Hertz(150_000_000)),
VoltageScale::Scale3 => (Vos::SCALE3, Hertz(100_000_000)),
};
// Configure voltage scale.
PWR.voscr().modify(|w| w.set_vos(vos));
while !PWR.vossr().read().vosrdy() {}
// Configure HSI
let hsi = match config.hsi {
None => {
RCC.cr().modify(|w| w.set_hsion(false));
None
}
Some(hsi) => {
let (freq, hsidiv) = match hsi {
Hsi::Mhz64 => (HSI_FREQ / 1u32, Hsidiv::DIV1),
Hsi::Mhz32 => (HSI_FREQ / 2u32, Hsidiv::DIV2),
Hsi::Mhz16 => (HSI_FREQ / 4u32, Hsidiv::DIV4),
Hsi::Mhz8 => (HSI_FREQ / 8u32, Hsidiv::DIV8),
};
RCC.cr().modify(|w| {
w.set_hsidiv(hsidiv);
w.set_hsion(true);
});
while !RCC.cr().read().hsirdy() {}
Some(freq)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
let (byp, ext) = match hse.mode {
HseMode::Oscillator => (false, Hseext::ANALOG),
HseMode::BypassAnalog => (true, Hseext::ANALOG),
HseMode::BypassDigital => (true, Hseext::DIGITAL),
};
RCC.cr().modify(|w| {
w.set_hsebyp(byp);
w.set_hseext(ext);
});
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Configure HSI48.
RCC.cr().modify(|w| w.set_hsi48on(config.hsi48));
let _hsi48 = match config.hsi48 {
false => None,
true => {
while !RCC.cr().read().hsi48rdy() {}
Some(CSI_FREQ)
}
};
// Configure CSI.
RCC.cr().modify(|w| w.set_csion(config.csi));
let csi = match config.csi {
false => None,
true => {
while !RCC.cr().read().csirdy() {}
Some(CSI_FREQ)
}
};
// Configure PLLs.
let pll_input = PllInput { csi, hse, hsi };
let pll1 = init_pll(0, config.pll1, &pll_input);
let _pll2 = init_pll(1, config.pll2, &pll_input);
#[cfg(rcc_h5)]
let _pll3 = init_pll(2, config.pll3, &pll_input);
// Configure sysclk
let (sys, sw) = match config.sys {
Sysclk::HSI => (unwrap!(hsi), Sw::HSI),
Sysclk::HSE => (unwrap!(hse), Sw::HSE),
Sysclk::CSI => (unwrap!(csi), Sw::CSI),
Sysclk::Pll1P => (unwrap!(pll1.p), Sw::PLL1),
};
assert!(sys <= max_clk);
let hclk = config.ahb_pre.div(sys);
let apb1 = config.apb1_pre.div(hclk);
let apb1_tim = config.apb1_pre.div_tim(hclk, config.timer_prescaler);
let apb2 = config.apb2_pre.div(hclk);
let apb2_tim = config.apb2_pre.div_tim(hclk, config.timer_prescaler);
let apb3 = config.apb3_pre.div(hclk);
flash_setup(hclk, config.voltage_scale);
// Set hpre
let hpre = config.ahb_pre.into();
RCC.cfgr2().modify(|w| w.set_hpre(hpre));
while RCC.cfgr2().read().hpre() != hpre {}
// set ppre
RCC.cfgr2().modify(|w| {
w.set_ppre1(config.apb1_pre.into());
w.set_ppre2(config.apb2_pre.into());
w.set_ppre3(config.apb3_pre.into());
});
RCC.cfgr().modify(|w| w.set_timpre(config.timer_prescaler.into()));
RCC.cfgr().modify(|w| w.set_sw(sw));
while RCC.cfgr().read().sws() != sw {}
set_freqs(Clocks {
sys,
ahb1: hclk,
ahb2: hclk,
ahb3: hclk,
ahb4: hclk,
apb1,
apb2,
apb3,
apb1_tim,
apb2_tim,
adc: None,
});
}
struct PllInput {
hsi: Option<Hertz>,
hse: Option<Hertz>,
csi: Option<Hertz>,
}
struct PllOutput {
p: Option<Hertz>,
#[allow(dead_code)]
q: Option<Hertz>,
#[allow(dead_code)]
r: Option<Hertz>,
}
unsafe fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
let Some(config) = config else {
// Stop PLL
RCC.cr().modify(|w| w.set_pllon(num, false));
while RCC.cr().read().pllrdy(num) {}
// "To save power when PLL1 is not used, the value of PLL1M must be set to 0.""
RCC.pllcfgr(num).write(|w| {
w.set_divm(0);
});
return PllOutput{
p: None,
q: None,
r: None,
}
};
assert!(1 <= config.prediv && config.prediv <= 63);
assert!(4 <= config.mul && config.mul <= 512);
let (in_clk, src) = match config.source {
PllSource::Hsi => (unwrap!(input.hsi), Pllsrc::HSI),
PllSource::Hse => (unwrap!(input.hse), Pllsrc::HSE),
PllSource::Csi => (unwrap!(input.csi), Pllsrc::CSI),
};
let ref_clk = in_clk / config.prediv as u32;
let ref_range = match ref_clk.0 {
..=1_999_999 => Pllrge::RANGE1,
..=3_999_999 => Pllrge::RANGE2,
..=7_999_999 => Pllrge::RANGE4,
..=16_000_000 => Pllrge::RANGE8,
x => panic!("pll ref_clk out of range: {} mhz", x),
};
// The smaller range (150 to 420 MHz) must
// be chosen when the reference clock frequency is lower than 2 MHz.
let wide_allowed = ref_range != Pllrge::RANGE1;
let vco_clk = ref_clk * config.mul;
let vco_range = match vco_clk.0 {
VCO_MIN..=VCO_MAX => Pllvcosel::MEDIUMVCO,
VCO_WIDE_MIN..=VCO_WIDE_MAX if wide_allowed => Pllvcosel::WIDEVCO,
x => panic!("pll vco_clk out of range: {} mhz", x),
};
let p = config.divp.map(|div| {
assert!(1 <= div && div <= 128);
if num == 0 {
// on PLL1, DIVP must be even.
assert!(div % 2 == 0);
}
vco_clk / div
});
let q = config.divq.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
let r = config.divr.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
RCC.pllcfgr(num).write(|w| {
w.set_pllsrc(src);
w.set_divm(config.prediv);
w.set_pllvcosel(vco_range);
w.set_pllrge(ref_range);
w.set_pllfracen(false);
w.set_pllpen(p.is_some());
w.set_pllqen(q.is_some());
w.set_pllren(r.is_some());
});
RCC.plldivr(num).write(|w| {
w.set_plln(config.mul - 1);
w.set_pllp((config.divp.unwrap_or(1) - 1) as u8);
w.set_pllq((config.divq.unwrap_or(1) - 1) as u8);
w.set_pllr((config.divr.unwrap_or(1) - 1) as u8);
});
RCC.cr().modify(|w| w.set_pllon(num, true));
while !RCC.cr().read().pllrdy(num) {}
PllOutput { p, q, r }
}
fn flash_setup(clk: Hertz, vos: VoltageScale) {
// RM0481 Rev 1, table 37
// LATENCY WRHIGHFREQ VOS3 VOS2 VOS1 VOS0
// 0 0 0 to 20 MHz 0 to 30 MHz 0 to 34 MHz 0 to 42 MHz
// 1 0 20 to 40 MHz 30 to 60 MHz 34 to 68 MHz 42 to 84 MHz
// 2 1 40 to 60 MHz 60 to 90 MHz 68 to 102 MHz 84 to 126 MHz
// 3 1 60 to 80 MHz 90 to 120 MHz 102 to 136 MHz 126 to 168 MHz
// 4 2 80 to 100 MHz 120 to 150 MHz 136 to 170 MHz 168 to 210 MHz
// 5 2 170 to 200 MHz 210 to 250 MHz
// See RM0433 Rev 7 Table 17. FLASH recommended number of wait
// states and programming delay
let (latency, wrhighfreq) = match (vos, clk.0) {
(VoltageScale::Scale0, ..=42_000_000) => (0, 0),
(VoltageScale::Scale0, ..=84_000_000) => (1, 0),
(VoltageScale::Scale0, ..=126_000_000) => (2, 1),
(VoltageScale::Scale0, ..=168_000_000) => (3, 1),
(VoltageScale::Scale0, ..=210_000_000) => (4, 2),
(VoltageScale::Scale0, ..=250_000_000) => (5, 2),
(VoltageScale::Scale1, ..=34_000_000) => (0, 0),
(VoltageScale::Scale1, ..=68_000_000) => (1, 0),
(VoltageScale::Scale1, ..=102_000_000) => (2, 1),
(VoltageScale::Scale1, ..=136_000_000) => (3, 1),
(VoltageScale::Scale1, ..=170_000_000) => (4, 2),
(VoltageScale::Scale1, ..=200_000_000) => (5, 2),
(VoltageScale::Scale2, ..=30_000_000) => (0, 0),
(VoltageScale::Scale2, ..=60_000_000) => (1, 0),
(VoltageScale::Scale2, ..=90_000_000) => (2, 1),
(VoltageScale::Scale2, ..=120_000_000) => (3, 1),
(VoltageScale::Scale2, ..=150_000_000) => (4, 2),
(VoltageScale::Scale3, ..=20_000_000) => (0, 0),
(VoltageScale::Scale3, ..=40_000_000) => (1, 0),
(VoltageScale::Scale3, ..=60_000_000) => (2, 1),
(VoltageScale::Scale3, ..=80_000_000) => (3, 1),
(VoltageScale::Scale3, ..=100_000_000) => (4, 2),
_ => unreachable!(),
};
defmt::debug!("flash: latency={} wrhighfreq={}", latency, wrhighfreq);
// NOTE(unsafe) Atomic write
unsafe {
FLASH.acr().write(|w| {
w.set_wrhighfreq(wrhighfreq);
w.set_latency(latency);
});
while FLASH.acr().read().latency() != latency {}
}
}

View File

@ -1,7 +1,15 @@
use core::marker::PhantomData;
use embassy_hal_common::into_ref;
use stm32_metapac::rcc::vals::{Mcopre, Mcosel};
use crate::gpio::sealed::AFType;
use crate::gpio::Speed;
use crate::pac::rcc::vals::{Hpre, Msirange, Pllsrc, Ppre, Sw}; use crate::pac::rcc::vals::{Hpre, Msirange, Pllsrc, Ppre, Sw};
use crate::pac::{FLASH, RCC}; use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks}; use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz; use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// HSI speed /// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000); pub const HSI_FREQ: Hertz = Hertz(16_000_000);
@ -298,6 +306,131 @@ impl Default for Config {
} }
} }
pub enum McoClock {
DIV1,
DIV2,
DIV4,
DIV8,
DIV16,
}
impl McoClock {
fn into_raw(&self) -> Mcopre {
match self {
McoClock::DIV1 => Mcopre::DIV1,
McoClock::DIV2 => Mcopre::DIV2,
McoClock::DIV4 => Mcopre::DIV4,
McoClock::DIV8 => Mcopre::DIV8,
McoClock::DIV16 => Mcopre::DIV16,
}
}
}
#[derive(Copy, Clone)]
pub enum Mco1Source {
Disabled,
Lse,
Lsi,
Hse,
Hsi16,
PllClk,
SysClk,
Msi,
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Hsi48,
}
impl Default for Mco1Source {
fn default() -> Self {
Self::Hsi16
}
}
pub trait McoSource {
type Raw;
fn into_raw(&self) -> Self::Raw;
}
impl McoSource for Mco1Source {
type Raw = Mcosel;
fn into_raw(&self) -> Self::Raw {
match self {
Mco1Source::Disabled => Mcosel::NOCLOCK,
Mco1Source::Lse => Mcosel::LSE,
Mco1Source::Lsi => Mcosel::LSI,
Mco1Source::Hse => Mcosel::HSE,
Mco1Source::Hsi16 => Mcosel::HSI16,
Mco1Source::PllClk => Mcosel::PLL,
Mco1Source::SysClk => Mcosel::SYSCLK,
Mco1Source::Msi => Mcosel::MSI,
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Mco1Source::Hsi48 => Mcosel::HSI48,
}
}
}
pub(crate) mod sealed {
use stm32_metapac::rcc::vals::Mcopre;
pub trait McoInstance {
type Source;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre);
}
}
pub trait McoInstance: sealed::McoInstance + 'static {}
pin_trait!(McoPin, McoInstance);
impl sealed::McoInstance for peripherals::MCO {
type Source = Mcosel;
unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) {
RCC.cfgr().modify(|w| {
w.set_mcosel(source);
w.set_mcopre(prescaler);
});
match source {
Mcosel::HSI16 => {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
}
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
Mcosel::HSI48 => {
RCC.crrcr().modify(|w| w.set_hsi48on(true));
while !RCC.crrcr().read().hsi48rdy() {}
}
_ => {}
}
}
}
impl McoInstance for peripherals::MCO {}
pub struct Mco<'d, T: McoInstance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: McoInstance> Mco<'d, T> {
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
pin: impl Peripheral<P = impl McoPin<T>> + 'd,
source: impl McoSource<Raw = T::Source>,
prescaler: McoClock,
) -> Self {
into_ref!(pin);
critical_section::with(|_| unsafe {
T::apply_clock_settings(source.into_raw(), prescaler.into_raw());
pin.set_as_af(pin.af_num(), AFType::OutputPushPull);
pin.set_speed(Speed::VeryHigh);
});
Self { phantom: PhantomData }
}
}
pub(crate) unsafe fn init(config: Config) { pub(crate) unsafe fn init(config: Config) {
let (sys_clk, sw) = match config.mux { let (sys_clk, sw) = match config.mux {
ClockSrc::MSI(range) => { ClockSrc::MSI(range) => {

View File

@ -21,6 +21,7 @@ use crate::time::Hertz;
#[cfg_attr(rcc_u5, path = "u5.rs")] #[cfg_attr(rcc_u5, path = "u5.rs")]
#[cfg_attr(rcc_wb, path = "wb.rs")] #[cfg_attr(rcc_wb, path = "wb.rs")]
#[cfg_attr(any(rcc_wl5, rcc_wle), path = "wl.rs")] #[cfg_attr(any(rcc_wl5, rcc_wle), path = "wl.rs")]
#[cfg_attr(any(rcc_h5, rcc_h50), path = "h5.rs")]
mod _version; mod _version;
pub use _version::*; pub use _version::*;
@ -36,7 +37,7 @@ pub struct Clocks {
pub apb2: Hertz, pub apb2: Hertz,
#[cfg(not(any(rcc_c0, rcc_g0)))] #[cfg(not(any(rcc_c0, rcc_g0)))]
pub apb2_tim: Hertz, pub apb2_tim: Hertz,
#[cfg(any(rcc_wl5, rcc_wle, rcc_u5))] #[cfg(any(rcc_wl5, rcc_wle, rcc_h5, rcc_h50, rcc_u5))]
pub apb3: Hertz, pub apb3: Hertz,
#[cfg(any(rcc_h7, rcc_h7ab))] #[cfg(any(rcc_h7, rcc_h7ab))]
pub apb4: Hertz, pub apb4: Hertz,
@ -44,14 +45,16 @@ pub struct Clocks {
// AHB // AHB
pub ahb1: Hertz, pub ahb1: Hertz,
#[cfg(any( #[cfg(any(
rcc_l4, rcc_l5, rcc_f2, rcc_f4, rcc_f410, rcc_f7, rcc_h7, rcc_h7ab, rcc_g4, rcc_u5, rcc_wb, rcc_wl5, rcc_wle rcc_l4, rcc_l5, rcc_f2, rcc_f4, rcc_f410, rcc_f7, rcc_h5, rcc_h50, rcc_h7, rcc_h7ab, rcc_g4, rcc_u5, rcc_wb,
rcc_wl5, rcc_wle
))] ))]
pub ahb2: Hertz, pub ahb2: Hertz,
#[cfg(any( #[cfg(any(
rcc_l4, rcc_l5, rcc_f2, rcc_f4, rcc_f410, rcc_f7, rcc_h7, rcc_h7ab, rcc_u5, rcc_wb, rcc_wl5, rcc_wle rcc_l4, rcc_l5, rcc_f2, rcc_f4, rcc_f410, rcc_f7, rcc_h5, rcc_h50, rcc_h7, rcc_h7ab, rcc_u5, rcc_wb, rcc_wl5,
rcc_wle
))] ))]
pub ahb3: Hertz, pub ahb3: Hertz,
#[cfg(any(rcc_h7, rcc_h7ab))] #[cfg(any(rcc_h5, rcc_h50, rcc_h7, rcc_h7ab))]
pub ahb4: Hertz, pub ahb4: Hertz,
#[cfg(any(rcc_f2, rcc_f4, rcc_f410, rcc_f7))] #[cfg(any(rcc_f2, rcc_f4, rcc_f410, rcc_f7))]
@ -60,7 +63,7 @@ pub struct Clocks {
#[cfg(stm32f1)] #[cfg(stm32f1)]
pub adc: Hertz, pub adc: Hertz,
#[cfg(any(rcc_h7, rcc_h7ab))] #[cfg(any(rcc_h5, rcc_h50, rcc_h7, rcc_h7ab))]
pub adc: Option<Hertz>, pub adc: Option<Hertz>,
} }

View File

@ -258,7 +258,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
w.set_spe(true); w.set_spe(true);
}); });
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
unsafe { unsafe {
T::REGS.ifcr().write(|w| w.0 = 0xffff_ffff); T::REGS.ifcr().write(|w| w.0 = 0xffff_ffff);
T::REGS.cfg2().modify(|w| { T::REGS.cfg2().modify(|w| {
@ -317,7 +317,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
}); });
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
unsafe { unsafe {
T::REGS.cfg2().modify(|w| { T::REGS.cfg2().modify(|w| {
w.set_cpha(cpha); w.set_cpha(cpha);
@ -330,7 +330,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
pub fn get_current_config(&self) -> Config { pub fn get_current_config(&self) -> Config {
#[cfg(any(spi_v1, spi_f1, spi_v2))] #[cfg(any(spi_v1, spi_f1, spi_v2))]
let cfg = unsafe { T::REGS.cr1().read() }; let cfg = unsafe { T::REGS.cr1().read() };
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
let cfg = unsafe { T::REGS.cfg2().read() }; let cfg = unsafe { T::REGS.cfg2().read() };
let polarity = if cfg.cpol() == vals::Cpol::IDLELOW { let polarity = if cfg.cpol() == vals::Cpol::IDLELOW {
Polarity::IdleLow Polarity::IdleLow
@ -383,7 +383,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
w.set_spe(true); w.set_spe(true);
}); });
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
unsafe { unsafe {
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_csusp(true); w.set_csusp(true);
@ -429,7 +429,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_spe(true); w.set_spe(true);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_cstart(true); w.set_cstart(true);
}); });
@ -459,7 +459,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
} }
// SPIv3 clears rxfifo on SPE=0 // SPIv3 clears rxfifo on SPE=0
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
flush_rx_fifo(T::REGS); flush_rx_fifo(T::REGS);
set_rxdmaen(T::REGS, true); set_rxdmaen(T::REGS, true);
@ -481,7 +481,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_spe(true); w.set_spe(true);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_cstart(true); w.set_cstart(true);
}); });
@ -514,7 +514,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
} }
// SPIv3 clears rxfifo on SPE=0 // SPIv3 clears rxfifo on SPE=0
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
flush_rx_fifo(T::REGS); flush_rx_fifo(T::REGS);
set_rxdmaen(T::REGS, true); set_rxdmaen(T::REGS, true);
@ -534,7 +534,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_spe(true); w.set_spe(true);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
T::REGS.cr1().modify(|w| { T::REGS.cr1().modify(|w| {
w.set_cstart(true); w.set_cstart(true);
}); });
@ -619,9 +619,9 @@ impl<'d, T: Instance, Tx, Rx> Drop for Spi<'d, T, Tx, Rx> {
} }
} }
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
use vals::Br; use vals::Br;
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
use vals::Mbr as Br; use vals::Mbr as Br;
fn compute_baud_rate(clocks: Hertz, freq: Hertz) -> Br { fn compute_baud_rate(clocks: Hertz, freq: Hertz) -> Br {
@ -647,17 +647,17 @@ trait RegsExt {
impl RegsExt for Regs { impl RegsExt for Regs {
fn tx_ptr<W>(&self) -> *mut W { fn tx_ptr<W>(&self) -> *mut W {
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
let dr = self.dr(); let dr = self.dr();
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
let dr = self.txdr(); let dr = self.txdr();
dr.ptr() as *mut W dr.ptr() as *mut W
} }
fn rx_ptr<W>(&self) -> *mut W { fn rx_ptr<W>(&self) -> *mut W {
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
let dr = self.dr(); let dr = self.dr();
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
let dr = self.rxdr(); let dr = self.rxdr();
dr.ptr() as *mut W dr.ptr() as *mut W
} }
@ -667,22 +667,22 @@ fn check_error_flags(sr: regs::Sr) -> Result<(), Error> {
if sr.ovr() { if sr.ovr() {
return Err(Error::Overrun); return Err(Error::Overrun);
} }
#[cfg(not(any(spi_f1, spi_v3, spi_v4)))] #[cfg(not(any(spi_f1, spi_v3, spi_v4, spi_v5)))]
if sr.fre() { if sr.fre() {
return Err(Error::Framing); return Err(Error::Framing);
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
if sr.tifre() { if sr.tifre() {
return Err(Error::Framing); return Err(Error::Framing);
} }
if sr.modf() { if sr.modf() {
return Err(Error::ModeFault); return Err(Error::ModeFault);
} }
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
if sr.crcerr() { if sr.crcerr() {
return Err(Error::Crc); return Err(Error::Crc);
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
if sr.crce() { if sr.crce() {
return Err(Error::Crc); return Err(Error::Crc);
} }
@ -696,11 +696,11 @@ fn spin_until_tx_ready(regs: Regs) -> Result<(), Error> {
check_error_flags(sr)?; check_error_flags(sr)?;
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
if sr.txe() { if sr.txe() {
return Ok(()); return Ok(());
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
if sr.txp() { if sr.txp() {
return Ok(()); return Ok(());
} }
@ -713,11 +713,11 @@ fn spin_until_rx_ready(regs: Regs) -> Result<(), Error> {
check_error_flags(sr)?; check_error_flags(sr)?;
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
if sr.rxne() { if sr.rxne() {
return Ok(()); return Ok(());
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
if sr.rxp() { if sr.rxp() {
return Ok(()); return Ok(());
} }
@ -726,11 +726,11 @@ fn spin_until_rx_ready(regs: Regs) -> Result<(), Error> {
fn flush_rx_fifo(regs: Regs) { fn flush_rx_fifo(regs: Regs) {
unsafe { unsafe {
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
while regs.sr().read().rxne() { while regs.sr().read().rxne() {
let _ = regs.dr().read(); let _ = regs.dr().read();
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
while regs.sr().read().rxp() { while regs.sr().read().rxp() {
let _ = regs.rxdr().read(); let _ = regs.rxdr().read();
} }
@ -739,11 +739,11 @@ fn flush_rx_fifo(regs: Regs) {
fn set_txdmaen(regs: Regs, val: bool) { fn set_txdmaen(regs: Regs, val: bool) {
unsafe { unsafe {
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
regs.cr2().modify(|reg| { regs.cr2().modify(|reg| {
reg.set_txdmaen(val); reg.set_txdmaen(val);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
regs.cfg1().modify(|reg| { regs.cfg1().modify(|reg| {
reg.set_txdmaen(val); reg.set_txdmaen(val);
}); });
@ -752,11 +752,11 @@ fn set_txdmaen(regs: Regs, val: bool) {
fn set_rxdmaen(regs: Regs, val: bool) { fn set_rxdmaen(regs: Regs, val: bool) {
unsafe { unsafe {
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
regs.cr2().modify(|reg| { regs.cr2().modify(|reg| {
reg.set_rxdmaen(val); reg.set_rxdmaen(val);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
regs.cfg1().modify(|reg| { regs.cfg1().modify(|reg| {
reg.set_rxdmaen(val); reg.set_rxdmaen(val);
}); });
@ -768,9 +768,9 @@ fn finish_dma(regs: Regs) {
#[cfg(spi_v2)] #[cfg(spi_v2)]
while regs.sr().read().ftlvl() > 0 {} while regs.sr().read().ftlvl() > 0 {}
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
while !regs.sr().read().txc() {} while !regs.sr().read().txc() {}
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
while regs.sr().read().bsy() {} while regs.sr().read().bsy() {}
// Disable the spi peripheral // Disable the spi peripheral
@ -780,12 +780,12 @@ fn finish_dma(regs: Regs) {
// The peripheral automatically disables the DMA stream on completion without error, // The peripheral automatically disables the DMA stream on completion without error,
// but it does not clear the RXDMAEN/TXDMAEN flag in CR2. // but it does not clear the RXDMAEN/TXDMAEN flag in CR2.
#[cfg(not(any(spi_v3, spi_v4)))] #[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
regs.cr2().modify(|reg| { regs.cr2().modify(|reg| {
reg.set_txdmaen(false); reg.set_txdmaen(false);
reg.set_rxdmaen(false); reg.set_rxdmaen(false);
}); });
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
regs.cfg1().modify(|reg| { regs.cfg1().modify(|reg| {
reg.set_txdmaen(false); reg.set_txdmaen(false);
reg.set_rxdmaen(false); reg.set_rxdmaen(false);
@ -799,7 +799,7 @@ fn transfer_word<W: Word>(regs: Regs, tx_word: W) -> Result<W, Error> {
unsafe { unsafe {
ptr::write_volatile(regs.tx_ptr(), tx_word); ptr::write_volatile(regs.tx_ptr(), tx_word);
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
regs.cr1().modify(|reg| reg.set_cstart(true)); regs.cr1().modify(|reg| reg.set_cstart(true));
} }
@ -970,7 +970,7 @@ pub(crate) mod sealed {
} }
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
pub fn dsize(&self) -> u8 { pub fn dsize(&self) -> u8 {
match self { match self {
WordSize::EightBit => 0b0111, WordSize::EightBit => 0b0111,
@ -978,7 +978,7 @@ pub(crate) mod sealed {
} }
} }
#[cfg(any(spi_v3, spi_v4))] #[cfg(any(spi_v3, spi_v4, spi_v5))]
pub fn _frxth(&self) -> vals::Fthlv { pub fn _frxth(&self) -> vals::Fthlv {
match self { match self {
WordSize::EightBit => vals::Fthlv::ONEFRAME, WordSize::EightBit => vals::Fthlv::ONEFRAME,

View File

@ -1,7 +1,9 @@
//! Time units //! Time units
use core::ops::{Div, Mul};
/// Hertz /// Hertz
#[derive(PartialEq, PartialOrd, Clone, Copy, Debug, Eq)] #[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Hertz(pub u32); pub struct Hertz(pub u32);
@ -33,3 +35,45 @@ pub fn khz(kilohertz: u32) -> Hertz {
pub fn mhz(megahertz: u32) -> Hertz { pub fn mhz(megahertz: u32) -> Hertz {
Hertz::mhz(megahertz) Hertz::mhz(megahertz)
} }
impl Mul<u32> for Hertz {
type Output = Hertz;
fn mul(self, rhs: u32) -> Self::Output {
Hertz(self.0 * rhs)
}
}
impl Div<u32> for Hertz {
type Output = Hertz;
fn div(self, rhs: u32) -> Self::Output {
Hertz(self.0 / rhs)
}
}
impl Mul<u16> for Hertz {
type Output = Hertz;
fn mul(self, rhs: u16) -> Self::Output {
self * (rhs as u32)
}
}
impl Div<u16> for Hertz {
type Output = Hertz;
fn div(self, rhs: u16) -> Self::Output {
self / (rhs as u32)
}
}
impl Mul<u8> for Hertz {
type Output = Hertz;
fn mul(self, rhs: u8) -> Self::Output {
self * (rhs as u32)
}
}
impl Div<u8> for Hertz {
type Output = Hertz;
fn div(self, rhs: u8) -> Self::Output {
self / (rhs as u32)
}
}

View File

@ -1,55 +1,51 @@
use core::cell::RefCell;
use core::future::poll_fn; use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering}; use core::slice;
use core::task::Poll; use core::task::Poll;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage}; use embassy_cortex_m::interrupt::Interrupt;
use embassy_hal_common::ring_buffer::RingBuffer; use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::WakerRegistration; use embassy_sync::waitqueue::AtomicWaker;
use super::*; use super::*;
pub struct State<'d, T: BasicInstance>(StateStorage<StateInner<'d, T>>); pub struct State {
impl<'d, T: BasicInstance> State<'d, T> { rx_waker: AtomicWaker,
rx_buf: RingBuffer,
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self { pub const fn new() -> Self {
Self(StateStorage::new()) Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
} }
} }
struct StateInner<'d, T: BasicInstance> {
phantom: PhantomData<&'d mut T>,
rx_waker: WakerRegistration,
rx: RingBuffer<'d>,
tx_waker: WakerRegistration,
tx: RingBuffer<'d>,
} }
unsafe impl<'d, T: BasicInstance> Send for StateInner<'d, T> {}
unsafe impl<'d, T: BasicInstance> Sync for StateInner<'d, T> {}
pub struct BufferedUart<'d, T: BasicInstance> { pub struct BufferedUart<'d, T: BasicInstance> {
inner: RefCell<PeripheralMutex<'d, StateInner<'d, T>>>, rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
} }
pub struct BufferedUartTx<'u, 'd, T: BasicInstance> { pub struct BufferedUartTx<'d, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>, phantom: PhantomData<&'d mut T>,
} }
pub struct BufferedUartRx<'u, 'd, T: BasicInstance> { pub struct BufferedUartRx<'d, T: BasicInstance> {
inner: &'u BufferedUart<'d, T>, phantom: PhantomData<&'d mut T>,
} }
impl<'d, T: BasicInstance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: BasicInstance> BufferedUart<'d, T> { impl<'d, T: BasicInstance> BufferedUart<'d, T> {
pub fn new( pub fn new(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd, peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8], rx_buffer: &'d mut [u8],
config: Config, config: Config,
@ -57,15 +53,14 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
T::enable(); T::enable();
T::reset(); T::reset();
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config) Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
} }
pub fn new_with_rtscts( pub fn new_with_rtscts(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd, peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd, rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd, cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
@ -86,16 +81,15 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
}); });
} }
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config) Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
} }
#[cfg(not(usart_v1))] #[cfg(not(usart_v1))]
pub fn new_with_de( pub fn new_with_de(
state: &'d mut State<'d, T>,
peri: impl Peripheral<P = T> + 'd, peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
de: impl Peripheral<P = impl DePin<T>> + 'd, de: impl Peripheral<P = impl DePin<T>> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8], rx_buffer: &'d mut [u8],
@ -113,23 +107,27 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
}); });
} }
Self::new_inner(state, peri, rx, tx, irq, tx_buffer, rx_buffer, config) Self::new_inner(peri, irq, rx, tx, tx_buffer, rx_buffer, config)
} }
fn new_inner( fn new_inner(
state: &'d mut State<'d, T>,
_peri: impl Peripheral<P = T> + 'd, _peri: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8], rx_buffer: &'d mut [u8],
config: Config, config: Config,
) -> BufferedUart<'d, T> { ) -> BufferedUart<'d, T> {
into_ref!(_peri, rx, tx, irq); into_ref!(_peri, rx, tx, irq);
let r = T::regs(); let state = T::buffered_state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe { unsafe {
rx.set_as_af(rx.af_num(), AFType::Input); rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull); tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
@ -147,209 +145,206 @@ impl<'d, T: BasicInstance> BufferedUart<'d, T> {
}); });
} }
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
Self { Self {
inner: RefCell::new(PeripheralMutex::new(irq, &mut state.0, move || StateInner { rx: BufferedUartRx { phantom: PhantomData },
phantom: PhantomData, tx: BufferedUartTx { phantom: PhantomData },
tx: RingBuffer::new(tx_buffer),
tx_waker: WakerRegistration::new(),
rx: RingBuffer::new(rx_buffer),
rx_waker: WakerRegistration::new(),
})),
} }
} }
pub fn split<'u>(&'u mut self) -> (BufferedUartRx<'u, 'd, T>, BufferedUartTx<'u, 'd, T>) { pub fn split(self) -> (BufferedUartTx<'d, T>, BufferedUartRx<'d, T>) {
(BufferedUartRx { inner: self }, BufferedUartTx { inner: self }) (self.tx, self.rx)
}
} }
async fn inner_read<'a>(&'a self, buf: &'a mut [u8]) -> Result<usize, Error> { impl<'d, T: BasicInstance> BufferedUartRx<'d, T> {
async fn read(&self, buf: &mut [u8]) -> Result<usize, Error> {
poll_fn(move |cx| { poll_fn(move |cx| {
let mut do_pend = false; let state = T::buffered_state();
let mut inner = self.inner.borrow_mut(); let mut rx_reader = unsafe { state.rx_buf.reader() };
let res = inner.with(|state| { let data = rx_reader.pop_slice();
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() { if !data.is_empty() {
let len = data.len().min(buf.len()); let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]); buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() { let do_pend = state.rx_buf.is_full();
do_pend = true; rx_reader.pop_done(len);
if do_pend {
unsafe { T::Interrupt::steal().pend() };
} }
state.rx.pop(len);
return Poll::Ready(Ok(len)); return Poll::Ready(Ok(len));
} }
state.rx_waker.register(cx.waker()); state.rx_waker.register(cx.waker());
Poll::Pending Poll::Pending
});
if do_pend {
inner.pend();
}
res
}) })
.await .await
} }
fn inner_blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> { fn blocking_read(&self, buf: &mut [u8]) -> Result<usize, Error> {
loop { loop {
let mut do_pend = false; let state = T::buffered_state();
let mut inner = self.inner.borrow_mut(); let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = inner.with(|state| { let data = rx_reader.pop_slice();
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let data = state.rx.pop_buf();
if !data.is_empty() { if !data.is_empty() {
let len = data.len().min(buf.len()); let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]); buf[..len].copy_from_slice(&data[..len]);
if state.rx.is_full() { let do_pend = state.rx_buf.is_full();
do_pend = true; rx_reader.pop_done(len);
}
state.rx.pop(len);
return len;
}
0
});
if do_pend { if do_pend {
inner.pend(); unsafe { T::Interrupt::steal().pend() };
} }
if n > 0 { return Ok(len);
return Ok(n);
} }
} }
} }
async fn inner_write<'a>(&'a self, buf: &'a [u8]) -> Result<usize, Error> { async fn fill_buf(&self) -> Result<&[u8], Error> {
poll_fn(move |cx| { poll_fn(move |cx| {
let mut inner = self.inner.borrow_mut(); let state = T::buffered_state();
let (poll, empty) = inner.with(|state| { let mut rx_reader = unsafe { state.rx_buf.reader() };
let empty = state.tx.is_empty(); let (p, n) = rx_reader.pop_buf();
let tx_buf = state.tx.push_buf(); if n == 0 {
if tx_buf.is_empty() { state.rx_waker.register(cx.waker());
state.tx_waker.register(cx.waker()); return Poll::Pending;
return (Poll::Pending, empty);
} }
let n = core::cmp::min(tx_buf.len(), buf.len()); let buf = unsafe { slice::from_raw_parts(p, n) };
tx_buf[..n].copy_from_slice(&buf[..n]); Poll::Ready(Ok(buf))
state.tx.push(n);
(Poll::Ready(Ok(n)), empty)
});
if empty {
inner.pend();
}
poll
}) })
.await .await
} }
async fn inner_flush<'a>(&'a self) -> Result<(), Error> { fn consume(&self, amt: usize) {
let state = T::buffered_state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let full = state.rx_buf.is_full();
rx_reader.pop_done(amt);
if full {
unsafe { T::Interrupt::steal().pend() };
}
}
}
impl<'d, T: BasicInstance> BufferedUartTx<'d, T> {
async fn write(&self, buf: &[u8]) -> Result<usize, Error> {
poll_fn(move |cx| { poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| { let state = T::buffered_state();
if !state.tx.is_empty() { let empty = state.tx_buf.is_empty();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let data = tx_writer.push_slice();
if data.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
if empty {
unsafe { T::Interrupt::steal() }.pend();
}
Poll::Ready(Ok(n))
})
.await
}
async fn flush(&self) -> Result<(), Error> {
poll_fn(move |cx| {
let state = T::buffered_state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker()); state.tx_waker.register(cx.waker());
return Poll::Pending; return Poll::Pending;
} }
Poll::Ready(Ok(())) Poll::Ready(Ok(()))
}) })
})
.await .await
} }
fn inner_blocking_write(&self, buf: &[u8]) -> Result<usize, Error> { fn blocking_write(&self, buf: &[u8]) -> Result<usize, Error> {
loop { loop {
let mut inner = self.inner.borrow_mut(); let state = T::buffered_state();
let (n, empty) = inner.with(|state| { let empty = state.tx_buf.is_empty();
let empty = state.tx.is_empty();
let tx_buf = state.tx.push_buf();
if tx_buf.is_empty() {
return (0, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len()); let mut tx_writer = unsafe { state.tx_buf.writer() };
tx_buf[..n].copy_from_slice(&buf[..n]); let data = tx_writer.push_slice();
state.tx.push(n); if !data.is_empty() {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
tx_writer.push_done(n);
(n, empty)
});
if empty { if empty {
inner.pend(); unsafe { T::Interrupt::steal() }.pend();
} }
if n != 0 {
return Ok(n); return Ok(n);
} }
} }
} }
fn inner_blocking_flush(&self) -> Result<(), Error> { fn blocking_flush(&self) -> Result<(), Error> {
loop { loop {
if !self.inner.borrow_mut().with(|state| state.tx.is_empty()) { let state = T::buffered_state();
if state.tx_buf.is_empty() {
return Ok(()); return Ok(());
} }
} }
} }
async fn inner_fill_buf<'a>(&'a self) -> Result<&'a [u8], Error> {
poll_fn(move |cx| {
self.inner.borrow_mut().with(|state| {
compiler_fence(Ordering::SeqCst);
// We have data ready in buffer? Return it.
let buf = state.rx.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
} }
state.rx_waker.register(cx.waker()); impl<'d, T: BasicInstance> Drop for BufferedUartRx<'d, T> {
Poll::<Result<&[u8], Error>>::Pending fn drop(&mut self) {
}) let state = T::buffered_state();
}) unsafe {
.await state.rx_buf.deinit();
}
fn inner_consume(&self, amt: usize) { // TX is inactive if the the buffer is not available.
let mut inner = self.inner.borrow_mut(); // We can now unregister the interrupt handler
let signal = inner.with(|state| { if state.tx_buf.len() == 0 {
let full = state.rx.is_full(); T::Interrupt::steal().disable();
state.rx.pop(amt); }
full
});
if signal {
inner.pend();
} }
} }
} }
impl<'d, T: BasicInstance> StateInner<'d, T> impl<'d, T: BasicInstance> Drop for BufferedUartTx<'d, T> {
where fn drop(&mut self) {
Self: 'd, let state = T::buffered_state();
{ unsafe {
fn on_rx(&mut self) { state.tx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
unsafe fn on_interrupt<T: BasicInstance>(_: *mut ()) {
let r = T::regs(); let r = T::regs();
let state = T::buffered_state();
// RX
unsafe { unsafe {
let sr = sr(r).read(); let sr = sr(r).read();
clear_interrupt_flags(r, sr); clear_interrupt_flags(r, sr);
// This read also clears the error and idle interrupt flags on v1.
let b = rdr(r).read_volatile();
if sr.rxne() { if sr.rxne() {
if sr.pe() { if sr.pe() {
warn!("Parity error"); warn!("Parity error");
@ -364,37 +359,38 @@ where
warn!("Overrun error"); warn!("Overrun error");
} }
let buf = self.rx.push_buf(); let mut rx_writer = state.rx_buf.writer();
let buf = rx_writer.push_slice();
if !buf.is_empty() { if !buf.is_empty() {
buf[0] = b; // This read also clears the error and idle interrupt flags on v1.
self.rx.push(1); buf[0] = rdr(r).read_volatile();
rx_writer.push_done(1);
} else { } else {
warn!("RX buffer full, discard received byte"); // FIXME: Should we disable any further RX interrupts when the buffer becomes full.
} }
if self.rx.is_full() { if state.rx_buf.is_full() {
self.rx_waker.wake(); state.rx_waker.wake();
} }
} }
if sr.idle() { if sr.idle() {
self.rx_waker.wake(); state.rx_waker.wake();
}; };
} }
}
fn on_tx(&mut self) { // TX
let r = T::regs();
unsafe { unsafe {
if sr(r).read().txe() { if sr(r).read().txe() {
let buf = self.tx.pop_buf(); let mut tx_reader = state.tx_buf.reader();
let buf = tx_reader.pop_slice();
if !buf.is_empty() { if !buf.is_empty() {
r.cr1().modify(|w| { r.cr1().modify(|w| {
w.set_txeie(true); w.set_txeie(true);
}); });
tdr(r).write_volatile(buf[0].into()); tdr(r).write_volatile(buf[0].into());
self.tx.pop(1); tx_reader.pop_done(1);
self.tx_waker.wake(); state.tx_waker.wake();
} else { } else {
// Disable interrupt until we have something to transmit again // Disable interrupt until we have something to transmit again
r.cr1().modify(|w| { r.cr1().modify(|w| {
@ -404,18 +400,6 @@ where
} }
} }
} }
}
impl<'d, T: BasicInstance> PeripheralState for StateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.on_rx();
self.on_tx();
}
}
impl embedded_io::Error for Error { impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind { fn kind(&self) -> embedded_io::ErrorKind {
@ -427,94 +411,284 @@ impl<'d, T: BasicInstance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error; type Error = Error;
} }
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartRx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartRx<'d, T> {
type Error = Error; type Error = Error;
} }
impl<'u, 'd, T: BasicInstance> embedded_io::Io for BufferedUartTx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::Io for BufferedUartTx<'d, T> {
type Error = Error; type Error = Error;
} }
impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_read(buf).await self.rx.read(buf).await
} }
} }
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_read(buf).await Self::read(self, buf).await
} }
} }
impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> { async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner_fill_buf().await self.rx.fill_buf().await
} }
fn consume(&mut self, amt: usize) { fn consume(&mut self, amt: usize) {
self.inner_consume(amt) self.rx.consume(amt)
} }
} }
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> { async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
self.inner.inner_fill_buf().await Self::fill_buf(self).await
} }
fn consume(&mut self, amt: usize) { fn consume(&mut self, amt: usize) {
self.inner.inner_consume(amt) Self::consume(self, amt)
} }
} }
impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_write(buf).await self.tx.write(buf).await
} }
async fn flush(&mut self) -> Result<(), Self::Error> { async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_flush().await self.tx.flush().await
} }
} }
impl<'u, 'd, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_write(buf).await Self::write(self, buf).await
} }
async fn flush(&mut self) -> Result<(), Self::Error> { async fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_flush().await Self::flush(self).await
} }
} }
impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUart<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner_blocking_read(buf) self.rx.blocking_read(buf)
} }
} }
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::blocking::Read for BufferedUartRx<'d, T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> { fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_read(buf) self.blocking_read(buf)
} }
} }
impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUart<'d, T> { impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUart<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner_blocking_write(buf) self.tx.blocking_write(buf)
} }
fn flush(&mut self) -> Result<(), Self::Error> { fn flush(&mut self) -> Result<(), Self::Error> {
self.inner_blocking_flush() self.tx.blocking_flush()
} }
} }
impl<'u, 'd, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'u, 'd, T> { impl<'d, T: BasicInstance> embedded_io::blocking::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> { fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.inner.inner_blocking_write(buf) Self::blocking_write(self, buf)
} }
fn flush(&mut self) -> Result<(), Self::Error> { fn flush(&mut self) -> Result<(), Self::Error> {
self.inner.inner_blocking_flush() Self::blocking_flush(self)
}
}
mod eh02 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
let sr = sr(r).read();
if sr.pe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Parity))
} else if sr.fe() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Framing))
} else if sr.ne() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Noise))
} else if sr.ore() {
rdr(r).read_volatile();
Err(nb::Error::Other(Error::Overrun))
} else if sr.rxne() {
Ok(rdr(r).read_volatile())
} else {
Err(nb::Error::WouldBlock)
}
}
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_02::serial::Read<u8> for BufferedUart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_02::blocking::serial::Write<u8> for BufferedUart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, mut buffer: &[u8]) -> Result<(), Self::Error> {
while !buffer.is_empty() {
match self.tx.blocking_write(buffer) {
Ok(0) => panic!("zero-length write."),
Ok(n) => buffer = &buffer[n..],
Err(e) => return Err(e),
}
}
Ok(())
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::ErrorType for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUartRx<'d, T> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
embedded_hal_02::serial::Read::read(self)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUartTx<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Read for BufferedUart<'d, T> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: BasicInstance> embedded_hal_1::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.tx.blocking_write(buffer).map(drop)
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.blocking_flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_nb::serial::Write for BufferedUart<'d, T> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.tx.blocking_write(&[char]).map(drop).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.tx.blocking_flush().map_err(nb::Error::Other)
}
}
}
#[cfg(all(
feature = "unstable-traits",
feature = "nightly",
feature = "_todo_embedded_hal_serial"
))]
mod eha {
use core::future::Future;
use super::*;
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUartTx<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
Self::write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUartRx<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
Self::read(buf)
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Write for BufferedUart<'d, T> {
async fn write(&mut self, buf: &[u8]) -> Result<(), Self::Error> {
self.tx.write(buf)
}
async fn flush(&mut self) -> Result<(), Self::Error> {
self.tx.flush()
}
}
impl<'d, T: BasicInstance> embedded_hal_async::serial::Read for BufferedUart<'d, T> {
async fn read(&mut self, buf: &mut [u8]) -> Result<(), Self::Error> {
self.rx.read(buf)
}
} }
} }

View File

@ -1112,6 +1112,9 @@ pub(crate) mod sealed {
fn regs() -> Regs; fn regs() -> Regs;
fn state() -> &'static State; fn state() -> &'static State;
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State;
} }
pub trait FullInstance: BasicInstance { pub trait FullInstance: BasicInstance {
@ -1147,6 +1150,12 @@ macro_rules! impl_lpuart {
static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new(); static STATE: crate::usart::sealed::State = crate::usart::sealed::State::new();
&STATE &STATE
} }
#[cfg(feature = "nightly")]
fn buffered_state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
} }
impl BasicInstance for peripherals::$inst {} impl BasicInstance for peripherals::$inst {}

View File

@ -12,22 +12,29 @@ use embassy_usb_driver as driver;
use embassy_usb_driver::{ use embassy_usb_driver::{
Direction, EndpointAddress, EndpointAllocError, EndpointError, EndpointInfo, EndpointType, Event, Unsupported, Direction, EndpointAddress, EndpointAllocError, EndpointError, EndpointInfo, EndpointType, Event, Unsupported,
}; };
use pac::common::{Reg, RW};
use pac::usb::vals::{EpType, Stat};
use super::{DmPin, DpPin, Instance}; use super::{DmPin, DpPin, Instance};
use crate::gpio::sealed::AFType; use crate::gpio::sealed::AFType;
use crate::interrupt::InterruptExt; use crate::interrupt::InterruptExt;
use crate::pac::usb::regs; use crate::pac::usb::regs;
use crate::pac::usb::vals::{EpType, Stat};
use crate::pac::USBRAM;
use crate::rcc::sealed::RccPeripheral; use crate::rcc::sealed::RccPeripheral;
use crate::{pac, Peripheral}; use crate::Peripheral;
const EP_COUNT: usize = 8; const EP_COUNT: usize = 8;
#[cfg(any(usb_v1_x1, usb_v1_x2))] #[cfg(any(usbram_16x1_512, usbram_16x2_512))]
const EP_MEMORY_SIZE: usize = 512; const USBRAM_SIZE: usize = 512;
#[cfg(not(any(usb_v1_x1, usb_v1_x2)))] #[cfg(usbram_16x2_1024)]
const EP_MEMORY_SIZE: usize = 1024; const USBRAM_SIZE: usize = 1024;
#[cfg(usbram_32_2048)]
const USBRAM_SIZE: usize = 2048;
#[cfg(not(usbram_32_2048))]
const USBRAM_ALIGN: usize = 2;
#[cfg(usbram_32_2048)]
const USBRAM_ALIGN: usize = 4;
const NEW_AW: AtomicWaker = AtomicWaker::new(); const NEW_AW: AtomicWaker = AtomicWaker::new();
static BUS_WAKER: AtomicWaker = NEW_AW; static BUS_WAKER: AtomicWaker = NEW_AW;
@ -57,25 +64,60 @@ fn invariant(mut r: regs::Epr) -> regs::Epr {
r r
} }
fn align_len_up(len: u16) -> u16 {
((len as usize + USBRAM_ALIGN - 1) / USBRAM_ALIGN * USBRAM_ALIGN) as u16
}
// Returns (actual_len, len_bits) // Returns (actual_len, len_bits)
fn calc_out_len(len: u16) -> (u16, u16) { fn calc_out_len(len: u16) -> (u16, u16) {
match len { match len {
2..=62 => ((len + 1) / 2 * 2, ((len + 1) / 2) << 10), // NOTE: this could be 2..=62 with 16bit USBRAM, but not with 32bit. Limit it to 60 for simplicity.
63..=480 => ((len + 31) / 32 * 32, (((len + 31) / 32 - 1) << 10) | 0x8000), 2..=60 => (align_len_up(len), align_len_up(len) / 2 << 10),
61..=1024 => ((len + 31) / 32 * 32, (((len + 31) / 32 - 1) << 10) | 0x8000),
_ => panic!("invalid OUT length {}", len), _ => panic!("invalid OUT length {}", len),
} }
} }
fn ep_in_addr<T: Instance>(index: usize) -> Reg<u16, RW> {
T::regs().ep_mem(index * 4 + 0) #[cfg(not(usbram_32_2048))]
mod btable {
use super::*;
pub(super) unsafe fn write_in<T: Instance>(index: usize, addr: u16) {
USBRAM.mem(index * 4 + 0).write_value(addr);
} }
fn ep_in_len<T: Instance>(index: usize) -> Reg<u16, RW> {
T::regs().ep_mem(index * 4 + 1) pub(super) unsafe fn write_in_len<T: Instance>(index: usize, _addr: u16, len: u16) {
USBRAM.mem(index * 4 + 1).write_value(len);
} }
fn ep_out_addr<T: Instance>(index: usize) -> Reg<u16, RW> {
T::regs().ep_mem(index * 4 + 2) pub(super) unsafe fn write_out<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM.mem(index * 4 + 2).write_value(addr);
USBRAM.mem(index * 4 + 3).write_value(max_len_bits);
}
pub(super) unsafe fn read_out_len<T: Instance>(index: usize) -> u16 {
USBRAM.mem(index * 4 + 3).read()
}
}
#[cfg(usbram_32_2048)]
mod btable {
use super::*;
pub(super) unsafe fn write_in<T: Instance>(_index: usize, _addr: u16) {}
pub(super) unsafe fn write_in_len<T: Instance>(index: usize, addr: u16, len: u16) {
USBRAM.mem(index * 2).write_value((addr as u32) | ((len as u32) << 16));
}
pub(super) unsafe fn write_out<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM
.mem(index * 2 + 1)
.write_value((addr as u32) | ((max_len_bits as u32) << 16));
}
pub(super) unsafe fn read_out_len<T: Instance>(index: usize) -> u16 {
(USBRAM.mem(index * 2 + 1).read() >> 16) as u16
} }
fn ep_out_len<T: Instance>(index: usize) -> Reg<u16, RW> {
T::regs().ep_mem(index * 4 + 3)
} }
struct EndpointBuffer<T: Instance> { struct EndpointBuffer<T: Instance> {
@ -87,23 +129,25 @@ struct EndpointBuffer<T: Instance> {
impl<T: Instance> EndpointBuffer<T> { impl<T: Instance> EndpointBuffer<T> {
fn read(&mut self, buf: &mut [u8]) { fn read(&mut self, buf: &mut [u8]) {
assert!(buf.len() <= self.len as usize); assert!(buf.len() <= self.len as usize);
for i in 0..((buf.len() + 1) / 2) { for i in 0..(buf.len() + USBRAM_ALIGN - 1) / USBRAM_ALIGN {
let val = unsafe { T::regs().ep_mem(self.addr as usize / 2 + i).read() }; let val = unsafe { USBRAM.mem(self.addr as usize / USBRAM_ALIGN + i).read() };
buf[i * 2] = val as u8; let n = USBRAM_ALIGN.min(buf.len() - i * USBRAM_ALIGN);
if i * 2 + 1 < buf.len() { buf[i * USBRAM_ALIGN..][..n].copy_from_slice(&val.to_le_bytes()[..n]);
buf[i * 2 + 1] = (val >> 8) as u8;
}
} }
} }
fn write(&mut self, buf: &[u8]) { fn write(&mut self, buf: &[u8]) {
assert!(buf.len() <= self.len as usize); assert!(buf.len() <= self.len as usize);
for i in 0..((buf.len() + 1) / 2) { for i in 0..(buf.len() + USBRAM_ALIGN - 1) / USBRAM_ALIGN {
let mut val = buf[i * 2] as u16; let mut val = [0u8; USBRAM_ALIGN];
if i * 2 + 1 < buf.len() { let n = USBRAM_ALIGN.min(buf.len() - i * USBRAM_ALIGN);
val |= (buf[i * 2 + 1] as u16) << 8; val[..n].copy_from_slice(&buf[i * USBRAM_ALIGN..][..n]);
}
unsafe { T::regs().ep_mem(self.addr as usize / 2 + i).write_value(val) }; #[cfg(not(usbram_32_2048))]
let val = u16::from_le_bytes(val);
#[cfg(usbram_32_2048)]
let val = u32::from_le_bytes(val);
unsafe { USBRAM.mem(self.addr as usize / USBRAM_ALIGN + i).write_value(val) };
} }
} }
} }
@ -139,8 +183,12 @@ impl<'d, T: Instance> Driver<'d, T> {
#[cfg(stm32l5)] #[cfg(stm32l5)]
unsafe { unsafe {
crate::peripherals::PWR::enable(); crate::peripherals::PWR::enable();
crate::pac::PWR.cr2().modify(|w| w.set_usv(true));
}
pac::PWR.cr2().modify(|w| w.set_usv(true)); #[cfg(pwr_h5)]
unsafe {
crate::pac::PWR.usbscr().modify(|w| w.set_usb33sv(true))
} }
unsafe { unsafe {
@ -256,8 +304,9 @@ impl<'d, T: Instance> Driver<'d, T> {
} }
fn alloc_ep_mem(&mut self, len: u16) -> u16 { fn alloc_ep_mem(&mut self, len: u16) -> u16 {
assert!(len as usize % USBRAM_ALIGN == 0);
let addr = self.ep_mem_free; let addr = self.ep_mem_free;
if addr + len > EP_MEMORY_SIZE as _ { if addr + len > USBRAM_SIZE as _ {
panic!("Endpoint memory full"); panic!("Endpoint memory full");
} }
self.ep_mem_free += len; self.ep_mem_free += len;
@ -306,10 +355,7 @@ impl<'d, T: Instance> Driver<'d, T> {
let addr = self.alloc_ep_mem(len); let addr = self.alloc_ep_mem(len);
trace!(" len_bits = {:04x}", len_bits); trace!(" len_bits = {:04x}", len_bits);
unsafe { unsafe { btable::write_out::<T>(index, addr, len_bits) }
ep_out_addr::<T>(index).write_value(addr);
ep_out_len::<T>(index).write_value(len_bits);
}
EndpointBuffer { EndpointBuffer {
addr, addr,
@ -321,13 +367,11 @@ impl<'d, T: Instance> Driver<'d, T> {
assert!(!ep.used_in); assert!(!ep.used_in);
ep.used_in = true; ep.used_in = true;
let len = (max_packet_size + 1) / 2 * 2; let len = align_len_up(max_packet_size);
let addr = self.alloc_ep_mem(len); let addr = self.alloc_ep_mem(len);
unsafe {
ep_in_addr::<T>(index).write_value(addr);
// ep_in_len is written when actually TXing packets. // ep_in_len is written when actually TXing packets.
} unsafe { btable::write_in::<T>(index, addr) }
EndpointBuffer { EndpointBuffer {
addr, addr,
@ -398,7 +442,7 @@ impl<'d, T: Instance> driver::Driver<'d> for Driver<'d, T> {
w.set_ctrm(true); w.set_ctrm(true);
}); });
#[cfg(usb_v3)] #[cfg(any(usb_v3, usb_v4))]
regs.bcdr().write(|w| w.set_dppu(true)) regs.bcdr().write(|w| w.set_dppu(true))
} }
@ -633,12 +677,12 @@ impl<'d, T: Instance, D> Endpoint<'d, T, D> {
fn write_data(&mut self, buf: &[u8]) { fn write_data(&mut self, buf: &[u8]) {
let index = self.info.addr.index(); let index = self.info.addr.index();
self.buf.write(buf); self.buf.write(buf);
unsafe { ep_in_len::<T>(index).write_value(buf.len() as _) }; unsafe { btable::write_in_len::<T>(index, self.buf.addr, buf.len() as _) }
} }
fn read_data(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> { fn read_data(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> {
let index = self.info.addr.index(); let index = self.info.addr.index();
let rx_len = unsafe { ep_out_len::<T>(index).read() as usize } & 0x3FF; let rx_len = unsafe { btable::read_out_len::<T>(index) as usize } & 0x3FF;
trace!("READ DONE, rx_len = {}", rx_len); trace!("READ DONE, rx_len = {}", rx_len);
if rx_len > buf.len() { if rx_len > buf.len() {
return Err(EndpointError::BufferOverflow); return Err(EndpointError::BufferOverflow);

View File

@ -89,6 +89,9 @@ foreach_interrupt!(
} else if #[cfg(stm32h7)] { } else if #[cfg(stm32h7)] {
const FIFO_DEPTH_WORDS: u16 = 1024; const FIFO_DEPTH_WORDS: u16 = 1024;
const ENDPOINT_COUNT: usize = 9; const ENDPOINT_COUNT: usize = 9;
} else if #[cfg(stm32u5)] {
const FIFO_DEPTH_WORDS: u16 = 320;
const ENDPOINT_COUNT: usize = 6;
} else { } else {
compile_error!("USB_OTG_FS peripheral is not supported by this chip."); compile_error!("USB_OTG_FS peripheral is not supported by this chip.");
} }
@ -137,6 +140,9 @@ foreach_interrupt!(
))] { ))] {
const FIFO_DEPTH_WORDS: u16 = 1024; const FIFO_DEPTH_WORDS: u16 = 1024;
const ENDPOINT_COUNT: usize = 9; const ENDPOINT_COUNT: usize = 9;
} else if #[cfg(stm32u5)] {
const FIFO_DEPTH_WORDS: u16 = 1024;
const ENDPOINT_COUNT: usize = 9;
} else { } else {
compile_error!("USB_OTG_HS peripheral is not supported by this chip."); compile_error!("USB_OTG_HS peripheral is not supported by this chip.");
} }

View File

@ -25,6 +25,7 @@ features = ["nightly"]
[features] [features]
nightly = ["embedded-io/async"] nightly = ["embedded-io/async"]
std = [] std = []
turbowakers = []
[dependencies] [dependencies]
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }

View File

@ -0,0 +1,41 @@
use core::cell::Cell;
use core::task::Waker;
use crate::blocking_mutex::raw::CriticalSectionRawMutex;
use crate::blocking_mutex::Mutex;
/// Utility struct to register and wake a waker.
pub struct AtomicWaker {
waker: Mutex<CriticalSectionRawMutex, Cell<Option<Waker>>>,
}
impl AtomicWaker {
/// Create a new `AtomicWaker`.
pub const fn new() -> Self {
Self {
waker: Mutex::const_new(CriticalSectionRawMutex::new(), Cell::new(None)),
}
}
/// Register a waker. Overwrites the previous waker, if any.
pub fn register(&self, w: &Waker) {
critical_section::with(|cs| {
let cell = self.waker.borrow(cs);
cell.set(match cell.replace(None) {
Some(w2) if (w2.will_wake(w)) => Some(w2),
_ => Some(w.clone()),
})
})
}
/// Wake the registered waker, if any.
pub fn wake(&self) {
critical_section::with(|cs| {
let cell = self.waker.borrow(cs);
if let Some(w) = cell.replace(None) {
w.wake_by_ref();
cell.set(Some(w));
}
})
}
}

View File

@ -0,0 +1,30 @@
use core::ptr;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicPtr, Ordering};
use core::task::Waker;
/// Utility struct to register and wake a waker.
pub struct AtomicWaker {
waker: AtomicPtr<()>,
}
impl AtomicWaker {
/// Create a new `AtomicWaker`.
pub const fn new() -> Self {
Self {
waker: AtomicPtr::new(ptr::null_mut()),
}
}
/// Register a waker. Overwrites the previous waker, if any.
pub fn register(&self, w: &Waker) {
self.waker.store(w.as_turbo_ptr().as_ptr() as _, Ordering::Release);
}
/// Wake the registered waker, if any.
pub fn wake(&self) {
if let Some(ptr) = NonNull::new(self.waker.load(Ordering::Acquire)) {
unsafe { Waker::from_turbo_ptr(ptr) }.wake();
}
}
}

View File

@ -1,7 +1,11 @@
//! Async low-level wait queues //! Async low-level wait queues
mod waker; #[cfg_attr(feature = "turbowakers", path = "atomic_waker_turbo.rs")]
pub use waker::*; mod atomic_waker;
pub use atomic_waker::*;
mod waker_registration;
pub use waker_registration::*;
mod multi_waker; mod multi_waker;
pub use multi_waker::*; pub use multi_waker::*;

View File

@ -1,10 +1,6 @@
use core::cell::Cell;
use core::mem; use core::mem;
use core::task::Waker; use core::task::Waker;
use crate::blocking_mutex::raw::CriticalSectionRawMutex;
use crate::blocking_mutex::Mutex;
/// Utility struct to register and wake a waker. /// Utility struct to register and wake a waker.
#[derive(Debug, Default)] #[derive(Debug, Default)]
pub struct WakerRegistration { pub struct WakerRegistration {
@ -54,39 +50,3 @@ impl WakerRegistration {
self.waker.is_some() self.waker.is_some()
} }
} }
/// Utility struct to register and wake a waker.
pub struct AtomicWaker {
waker: Mutex<CriticalSectionRawMutex, Cell<Option<Waker>>>,
}
impl AtomicWaker {
/// Create a new `AtomicWaker`.
pub const fn new() -> Self {
Self {
waker: Mutex::const_new(CriticalSectionRawMutex::new(), Cell::new(None)),
}
}
/// Register a waker. Overwrites the previous waker, if any.
pub fn register(&self, w: &Waker) {
critical_section::with(|cs| {
let cell = self.waker.borrow(cs);
cell.set(match cell.replace(None) {
Some(w2) if (w2.will_wake(w)) => Some(w2),
_ => Some(w.clone()),
})
})
}
/// Wake the registered waker, if any.
pub fn wake(&self) {
critical_section::with(|cs| {
let cell = self.waker.borrow(cs);
if let Some(w) = cell.replace(None) {
w.wake_by_ref();
cell.set(Some(w));
}
})
}
}

View File

@ -152,8 +152,8 @@ defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true } log = { version = "0.4.14", optional = true }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6" } embedded-hal-02 = { package = "embedded-hal", version = "0.2.6" }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9", optional = true} embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.10", optional = true}
embedded-hal-async = { version = "=0.2.0-alpha.0", optional = true} embedded-hal-async = { version = "=0.2.0-alpha.1", optional = true}
futures-util = { version = "0.3.17", default-features = false } futures-util = { version = "0.3.17", default-features = false }
embassy-sync = { version = "0.1", path = "../embassy-sync" } embassy-sync = { version = "0.1", path = "../embassy-sync" }

View File

@ -19,14 +19,12 @@ mod eh1 {
use super::*; use super::*;
impl embedded_hal_1::delay::DelayUs for Delay { impl embedded_hal_1::delay::DelayUs for Delay {
type Error = core::convert::Infallible; fn delay_us(&mut self, us: u32) {
block_for(Duration::from_micros(us as u64))
fn delay_us(&mut self, us: u32) -> Result<(), Self::Error> {
Ok(block_for(Duration::from_micros(us as u64)))
} }
fn delay_ms(&mut self, ms: u32) -> Result<(), Self::Error> { fn delay_ms(&mut self, ms: u32) {
Ok(block_for(Duration::from_millis(ms as u64))) block_for(Duration::from_millis(ms as u64))
} }
} }
} }
@ -37,14 +35,12 @@ mod eha {
use crate::Timer; use crate::Timer;
impl embedded_hal_async::delay::DelayUs for Delay { impl embedded_hal_async::delay::DelayUs for Delay {
type Error = core::convert::Infallible; async fn delay_us(&mut self, micros: u32) {
Timer::after(Duration::from_micros(micros as _)).await
async fn delay_us(&mut self, micros: u32) -> Result<(), Self::Error> {
Ok(Timer::after(Duration::from_micros(micros as _)).await)
} }
async fn delay_ms(&mut self, millis: u32) -> Result<(), Self::Error> { async fn delay_ms(&mut self, millis: u32) {
Ok(Timer::after(Duration::from_millis(millis as _)).await) Timer::after(Duration::from_millis(millis as _)).await
} }
} }
} }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] }
embassy-nrf = { version = "0.1.0", path = "../../../../embassy-nrf", features = ["time-driver-rtc1", "gpiote", "nightly"] } embassy-nrf = { version = "0.1.0", path = "../../../../embassy-nrf", features = ["time-driver-rtc1", "gpiote", "nightly"] }
embassy-boot = { version = "0.1.0", path = "../../../../embassy-boot/boot" } embassy-boot = { version = "0.1.0", path = "../../../../embassy-boot/boot" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly"] }
embassy-rp = { version = "0.1.0", path = "../../../../embassy-rp", features = ["time-driver", "unstable-traits", "nightly"] } embassy-rp = { version = "0.1.0", path = "../../../../embassy-rp", features = ["time-driver", "unstable-traits", "nightly"] }
embassy-boot-rp = { version = "0.1.0", path = "../../../../embassy-boot/rp" } embassy-boot-rp = { version = "0.1.0", path = "../../../../embassy-boot/rp" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f303re", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f303re", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f767zi", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f767zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32h743zi", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32h743zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l072cz", "time-driver-any", "exti", "memory-x"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l072cz", "time-driver-any", "exti", "memory-x"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l151cb-a", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l151cb-a", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l475vg", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l475vg", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["nightly", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] } embassy-time = { version = "0.1.0", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32wl55jc-cm4", "time-driver-any", "exti"] } embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32wl55jc-cm4", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" } embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32" }

View File

@ -27,9 +27,11 @@ fn main() -> ! {
wdt_config.run_during_sleep = true; wdt_config.run_during_sleep = true;
wdt_config.run_during_debug_halt = false; wdt_config.run_during_debug_halt = false;
let start = bl.prepare(&mut SingleFlashConfig::new(&mut BootFlash::<_, 4096>::new( let start = bl.prepare(&mut SingleFlashConfig::new(&mut BootFlash::new(WatchdogFlash::start(
WatchdogFlash::start(Nvmc::new(p.NVMC), p.WDT, wdt_config), Nvmc::new(p.NVMC),
))); p.WDT,
wdt_config,
))));
unsafe { bl.load(start) } unsafe { bl.load(start) }
} }

View File

@ -5,7 +5,6 @@ use cortex_m_rt::{entry, exception};
#[cfg(feature = "defmt")] #[cfg(feature = "defmt")]
use defmt_rtt as _; use defmt_rtt as _;
use embassy_boot_rp::*; use embassy_boot_rp::*;
use embassy_rp::flash::ERASE_SIZE;
use embassy_time::Duration; use embassy_time::Duration;
const FLASH_SIZE: usize = 2 * 1024 * 1024; const FLASH_SIZE: usize = 2 * 1024 * 1024;
@ -24,7 +23,7 @@ fn main() -> ! {
let mut bl: BootLoader = BootLoader::default(); let mut bl: BootLoader = BootLoader::default();
let flash = WatchdogFlash::<FLASH_SIZE>::start(p.FLASH, p.WATCHDOG, Duration::from_secs(8)); let flash = WatchdogFlash::<FLASH_SIZE>::start(p.FLASH, p.WATCHDOG, Duration::from_secs(8));
let mut flash = BootFlash::<_, ERASE_SIZE>::new(flash); let mut flash = BootFlash::new(flash);
let start = bl.prepare(&mut SingleFlashConfig::new(&mut flash)); let start = bl.prepare(&mut SingleFlashConfig::new(&mut flash));
core::mem::drop(flash); core::mem::drop(flash);

View File

@ -5,7 +5,7 @@ use cortex_m_rt::{entry, exception};
#[cfg(feature = "defmt")] #[cfg(feature = "defmt")]
use defmt_rtt as _; use defmt_rtt as _;
use embassy_boot_stm32::*; use embassy_boot_stm32::*;
use embassy_stm32::flash::{Flash, ERASE_SIZE, ERASE_VALUE, WRITE_SIZE}; use embassy_stm32::flash::Flash;
#[entry] #[entry]
fn main() -> ! { fn main() -> ! {
@ -19,9 +19,10 @@ fn main() -> ! {
} }
*/ */
let mut bl: BootLoader<ERASE_SIZE, WRITE_SIZE> = BootLoader::default(); let mut bl: BootLoader<2048> = BootLoader::default();
let flash = Flash::new(p.FLASH); let flash = Flash::new(p.FLASH);
let mut flash = BootFlash::<_, ERASE_SIZE, ERASE_VALUE>::new(flash); let layout = flash.into_regions();
let mut flash = BootFlash::new(layout.bank1_region);
let start = bl.prepare(&mut SingleFlashConfig::new(&mut flash)); let start = bl.prepare(&mut SingleFlashConfig::new(&mut flash));
core::mem::drop(flash); core::mem::drop(flash);
unsafe { bl.load(start) } unsafe { bl.load(start) }

View File

@ -17,7 +17,7 @@ log = [
[dependencies] [dependencies]
embassy-sync = { version = "0.1.0", path = "../../embassy-sync" } embassy-sync = { version = "0.1.0", path = "../../embassy-sync" }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features=["rtos-trace", "rtos-trace-interrupt", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "rtos-trace-interrupt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time" } embassy-time = { version = "0.1.0", path = "../../embassy-time" }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] } embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] }

View File

@ -12,7 +12,7 @@ nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/night
[dependencies] [dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" } embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] } embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["defmt", "integrated-timers"] } embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] } embassy-time = { version = "0.1.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time"] } embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time"] }
embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet"], optional = true } embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet"], optional = true }

View File

@ -9,7 +9,7 @@ embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = [ embassy-sync = { version = "0.1.0", path = "../../embassy-sync", features = [
"defmt", "defmt",
] } ] }
embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = [ embassy-executor = { version = "0.1.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread",
"nightly", "nightly",
"defmt", "defmt",
"integrated-timers", "integrated-timers",

View File

@ -1,5 +1,5 @@
[target.'cfg(all(target_arch = "arm", target_os = "none"))'] [target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "probe-run --chip RP2040" runner = "probe-rs-cli run --chip RP2040"
[build] [build]
target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+ target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+

Some files were not shown because too many files have changed in this diff Show More