diff --git a/embassy-rp/Cargo.toml b/embassy-rp/Cargo.toml index 885a4746..df0af8df 100644 --- a/embassy-rp/Cargo.toml +++ b/embassy-rp/Cargo.toml @@ -22,6 +22,10 @@ unstable-pac = [] time-driver = [] +rom-func-cache = [] +disable-intrinsics = [] +rom-v2-intrinsics = [] + # Enable nightly-only features nightly = ["embassy-executor/nightly", "embedded-hal-1", "embedded-hal-async", "embassy-embedded-hal/nightly", "dep:embassy-usb"] diff --git a/embassy-rp/src/intrinsics.rs b/embassy-rp/src/intrinsics.rs new file mode 100644 index 00000000..ac1f5480 --- /dev/null +++ b/embassy-rp/src/intrinsics.rs @@ -0,0 +1,276 @@ +#![macro_use] + +// Credit: taken from `rp-hal` (also licensed Apache+MIT) +// https://github.com/rp-rs/rp-hal/blob/main/rp2040-hal/src/intrinsics.rs + +/// Generate a series of aliases for an intrinsic function. +macro_rules! intrinsics_aliases { + ( + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty, + ) => {}; + ( + unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty, + ) => {}; + + ( + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty, + $alias:ident + $($rest:ident)* + ) => { + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + intrinsics! { + extern $abi fn $alias( $($argname: $ty),* ) -> $ret { + $name($($argname),*) + } + } + + intrinsics_aliases! { + extern $abi fn $name( $($argname: $ty),* ) -> $ret, + $($rest)* + } + }; + + ( + unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty, + $alias:ident + $($rest:ident)* + ) => { + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + intrinsics! { + unsafe extern $abi fn $alias( $($argname: $ty),* ) -> $ret { + $name($($argname),*) + } + } + + intrinsics_aliases! { + unsafe extern $abi fn $name( $($argname: $ty),* ) -> $ret, + $($rest)* + } + }; +} + +/// The macro used to define overridden intrinsics. +/// +/// This is heavily inspired by the macro used by compiler-builtins. The idea +/// is to abstract anything special that needs to be done to override an +/// intrinsic function. Intrinsic generation is disabled for non-ARM targets +/// so things like CI and docs generation do not have problems. Additionally +/// they can be disabled with the crate feature `disable-intrinsics` for +/// testing or comparing performance. +/// +/// Like the compiler-builtins macro, it accepts a series of functions that +/// looks like normal Rust code: +/// +/// intrinsics! { +/// extern "C" fn foo(a: i32) -> u32 { +/// // ... +/// } +/// +/// #[nonstandard_attribute] +/// extern "C" fn bar(a: i32) -> u32 { +/// // ... +/// } +/// } +/// +/// Each function can also be decorated with nonstandard attributes to control +/// additional behaviour: +/// +/// * `slower_than_default` - indicates that the override is slower than the +/// default implementation. Currently this just disables the override +/// entirely. +/// * `bootrom_v2` - indicates that the override is only available +/// on a V2 bootrom or higher. Only enabled when the feature +/// `rom-v2-intrinsics` is set. +/// * `alias` - accepts a list of names to alias the intrinsic to. +/// * `aeabi` - accepts a list of ARM EABI names to alias to. +/// +macro_rules! intrinsics { + () => {}; + + ( + #[slower_than_default] + $(#[$($attr:tt)*])* + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + // Not exported, but defined so the actual implementation is + // considered used + #[allow(dead_code)] + fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + intrinsics!($($rest)*); + }; + + ( + #[bootrom_v2] + $(#[$($attr:tt)*])* + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + // Not exported, but defined so the actual implementation is + // considered used + #[cfg(not(feature = "rom-v2-intrinsics"))] + #[allow(dead_code)] + fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + #[cfg(feature = "rom-v2-intrinsics")] + intrinsics! { + $(#[$($attr)*])* + extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + } + + intrinsics!($($rest)*); + }; + + ( + #[alias = $($alias:ident),*] + $(#[$($attr:tt)*])* + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + intrinsics! { + $(#[$($attr)*])* + extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + } + + intrinsics_aliases! { + extern $abi fn $name( $($argname: $ty),* ) -> $ret, + $($alias) * + } + + intrinsics!($($rest)*); + }; + + ( + #[alias = $($alias:ident),*] + $(#[$($attr:tt)*])* + unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + intrinsics! { + $(#[$($attr)*])* + unsafe extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + } + + intrinsics_aliases! { + unsafe extern $abi fn $name( $($argname: $ty),* ) -> $ret, + $($alias) * + } + + intrinsics!($($rest)*); + }; + + ( + #[aeabi = $($alias:ident),*] + $(#[$($attr:tt)*])* + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + intrinsics! { + $(#[$($attr)*])* + extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + } + + intrinsics_aliases! { + extern "aapcs" fn $name( $($argname: $ty),* ) -> $ret, + $($alias) * + } + + intrinsics!($($rest)*); + }; + + ( + $(#[$($attr:tt)*])* + extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + $(#[$($attr)*])* + extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + mod $name { + #[no_mangle] + $(#[$($attr)*])* + pub extern $abi fn $name( $($argname: $ty),* ) -> $ret { + super::$name($($argname),*) + } + } + + // Not exported, but defined so the actual implementation is + // considered used + #[cfg(not(all(target_arch = "arm", not(feature = "disable-intrinsics"))))] + #[allow(dead_code)] + fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + intrinsics!($($rest)*); + }; + + ( + $(#[$($attr:tt)*])* + unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty { + $($body:tt)* + } + + $($rest:tt)* + ) => { + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + $(#[$($attr)*])* + unsafe extern $abi fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + #[cfg(all(target_arch = "arm", not(feature = "disable-intrinsics")))] + mod $name { + #[no_mangle] + $(#[$($attr)*])* + pub unsafe extern $abi fn $name( $($argname: $ty),* ) -> $ret { + super::$name($($argname),*) + } + } + + // Not exported, but defined so the actual implementation is + // considered used + #[cfg(not(all(target_arch = "arm", not(feature = "disable-intrinsics"))))] + #[allow(dead_code)] + unsafe fn $name( $($argname: $ty),* ) -> $ret { + $($body)* + } + + intrinsics!($($rest)*); + }; +} diff --git a/embassy-rp/src/lib.rs b/embassy-rp/src/lib.rs index 9ce09064..9ac98d22 100644 --- a/embassy-rp/src/lib.rs +++ b/embassy-rp/src/lib.rs @@ -4,9 +4,12 @@ // This mod MUST go first, so that the others see its macros. pub(crate) mod fmt; +mod intrinsics; + pub mod dma; pub mod gpio; pub mod interrupt; +pub mod rom_data; pub mod rtc; pub mod spi; #[cfg(feature = "time-driver")] diff --git a/embassy-rp/src/rom_data.rs b/embassy-rp/src/rom_data.rs new file mode 100644 index 00000000..757a2711 --- /dev/null +++ b/embassy-rp/src/rom_data.rs @@ -0,0 +1,733 @@ +//! Functions and data from the RPI Bootrom. +//! +//! From the [RP2040 datasheet](https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf), Section 2.8.2.1: +//! +//! > The Bootrom contains a number of public functions that provide useful +//! > RP2040 functionality that might be needed in the absence of any other code +//! > on the device, as well as highly optimized versions of certain key +//! > functionality that would otherwise have to take up space in most user +//! > binaries. + +// Credit: taken from `rp-hal` (also licensed Apache+MIT) +// https://github.com/rp-rs/rp-hal/blob/main/rp2040-hal/src/rom_data.rs + +/// A bootrom function table code. +pub type RomFnTableCode = [u8; 2]; + +/// This function searches for (table) +type RomTableLookupFn = unsafe extern "C" fn(*const u16, u32) -> T; + +/// The following addresses are described at `2.8.2. Bootrom Contents` +/// Pointer to the lookup table function supplied by the rom. +const ROM_TABLE_LOOKUP_PTR: *const u16 = 0x0000_0018 as _; + +/// Pointer to helper functions lookup table. +const FUNC_TABLE: *const u16 = 0x0000_0014 as _; + +/// Pointer to the public data lookup table. +const DATA_TABLE: *const u16 = 0x0000_0016 as _; + +/// Address of the version number of the ROM. +const VERSION_NUMBER: *const u8 = 0x0000_0013 as _; + +/// Retrive rom content from a table using a code. +fn rom_table_lookup(table: *const u16, tag: RomFnTableCode) -> T { + unsafe { + let rom_table_lookup_ptr: *const u32 = rom_hword_as_ptr(ROM_TABLE_LOOKUP_PTR); + let rom_table_lookup: RomTableLookupFn = core::mem::transmute(rom_table_lookup_ptr); + rom_table_lookup(rom_hword_as_ptr(table) as *const u16, u16::from_le_bytes(tag) as u32) + } +} + +/// To save space, the ROM likes to store memory pointers (which are 32-bit on +/// the Cortex-M0+) using only the bottom 16-bits. The assumption is that the +/// values they point at live in the first 64 KiB of ROM, and the ROM is mapped +/// to address `0x0000_0000` and so 16-bits are always sufficient. +/// +/// This functions grabs a 16-bit value from ROM and expands it out to a full 32-bit pointer. +unsafe fn rom_hword_as_ptr(rom_address: *const u16) -> *const u32 { + let ptr: u16 = *rom_address; + ptr as *const u32 +} + +macro_rules! declare_rom_function { + ( + $(#[$outer:meta])* + fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty + $lookup:block + ) => { + #[doc = r"Additional access for the `"] + #[doc = stringify!($name)] + #[doc = r"` ROM function."] + pub mod $name { + /// Retrieve a function pointer. + #[cfg(not(feature = "rom-func-cache"))] + pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret { + let p: *const u32 = $lookup; + unsafe { + let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + + /// Retrieve a function pointer. + #[cfg(feature = "rom-func-cache")] + pub fn ptr() -> extern "C" fn( $($argname: $ty),* ) -> $ret { + use core::sync::atomic::{AtomicU16, Ordering}; + + // All pointers in the ROM fit in 16 bits, so we don't need a + // full width word to store the cached value. + static CACHED_PTR: AtomicU16 = AtomicU16::new(0); + // This is safe because the lookup will always resolve + // to the same value. So even if an interrupt or another + // core starts at the same time, it just repeats some + // work and eventually writes back the correct value. + let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) { + 0 => { + let raw: *const u32 = $lookup; + CACHED_PTR.store(raw as u16, Ordering::Relaxed); + raw + }, + val => val as *const u32, + }; + unsafe { + let func : extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + } + + $(#[$outer])* + pub extern "C" fn $name( $($argname: $ty),* ) -> $ret { + $name::ptr()($($argname),*) + } + }; + + ( + $(#[$outer:meta])* + unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty + $lookup:block + ) => { + #[doc = r"Additional access for the `"] + #[doc = stringify!($name)] + #[doc = r"` ROM function."] + pub mod $name { + /// Retrieve a function pointer. + #[cfg(not(feature = "rom-func-cache"))] + pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret { + let p: *const u32 = $lookup; + unsafe { + let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + + /// Retrieve a function pointer. + #[cfg(feature = "rom-func-cache")] + pub fn ptr() -> unsafe extern "C" fn( $($argname: $ty),* ) -> $ret { + use core::sync::atomic::{AtomicU16, Ordering}; + + // All pointers in the ROM fit in 16 bits, so we don't need a + // full width word to store the cached value. + static CACHED_PTR: AtomicU16 = AtomicU16::new(0); + // This is safe because the lookup will always resolve + // to the same value. So even if an interrupt or another + // core starts at the same time, it just repeats some + // work and eventually writes back the correct value. + let p: *const u32 = match CACHED_PTR.load(Ordering::Relaxed) { + 0 => { + let raw: *const u32 = $lookup; + CACHED_PTR.store(raw as u16, Ordering::Relaxed); + raw + }, + val => val as *const u32, + }; + unsafe { + let func : unsafe extern "C" fn( $($argname: $ty),* ) -> $ret = core::mem::transmute(p); + func + } + } + } + + $(#[$outer])* + pub unsafe extern "C" fn $name( $($argname: $ty),* ) -> $ret { + $name::ptr()($($argname),*) + } + }; +} + +macro_rules! rom_functions { + () => {}; + + ( + $(#[$outer:meta])* + $c:literal fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty; + + $($rest:tt)* + ) => { + declare_rom_function! { + $(#[$outer])* + fn $name( $($argname: $ty),* ) -> $ret { + $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c) + } + } + + rom_functions!($($rest)*); + }; + + ( + $(#[$outer:meta])* + $c:literal unsafe fn $name:ident( $($argname:ident: $ty:ty),* ) -> $ret:ty; + + $($rest:tt)* + ) => { + declare_rom_function! { + $(#[$outer])* + unsafe fn $name( $($argname: $ty),* ) -> $ret { + $crate::rom_data::rom_table_lookup($crate::rom_data::FUNC_TABLE, *$c) + } + } + + rom_functions!($($rest)*); + }; +} + +rom_functions! { + /// Return a count of the number of 1 bits in value. + b"P3" fn popcount32(value: u32) -> u32; + + /// Return the bits of value in the reverse order. + b"R3" fn reverse32(value: u32) -> u32; + + /// Return the number of consecutive high order 0 bits of value. If value is zero, returns 32. + b"L3" fn clz32(value: u32) -> u32; + + /// Return the number of consecutive low order 0 bits of value. If value is zero, returns 32. + b"T3" fn ctz32(value: u32) -> u32; + + /// Resets the RP2040 and uses the watchdog facility to re-start in BOOTSEL mode: + /// * gpio_activity_pin_mask is provided to enable an 'activity light' via GPIO attached LED + /// for the USB Mass Storage Device: + /// * 0 No pins are used as per cold boot. + /// * Otherwise a single bit set indicating which GPIO pin should be set to output and + /// raised whenever there is mass storage activity from the host. + /// * disable_interface_mask may be used to control the exposed USB interfaces: + /// * 0 To enable both interfaces (as per cold boot). + /// * 1 To disable the USB Mass Storage Interface. + /// * 2 to Disable the USB PICOBOOT Interface. + b"UB" fn reset_to_usb_boot(gpio_activity_pin_mask: u32, disable_interface_mask: u32) -> (); + + /// Sets n bytes start at ptr to the value c and returns ptr + b"MS" unsafe fn memset(ptr: *mut u8, c: u8, n: u32) -> *mut u8; + + /// Sets n bytes start at ptr to the value c and returns ptr. + /// + /// Note this is a slightly more efficient variant of _memset that may only + /// be used if ptr is word aligned. + // Note the datasheet does not match the actual ROM for the code here, see + // https://github.com/raspberrypi/pico-feedback/issues/217 + b"S4" unsafe fn memset4(ptr: *mut u32, c: u8, n: u32) -> *mut u32; + + /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the + /// regions overlap. + b"MC" unsafe fn memcpy(dest: *mut u8, src: *const u8, n: u32) -> *mut u8; + + /// Copies n bytes starting at src to dest and returns dest. The results are undefined if the + /// regions overlap. + /// + /// Note this is a slightly more efficient variant of _memcpy that may only be + /// used if dest and src are word aligned. + b"C4" unsafe fn memcpy44(dest: *mut u32, src: *const u32, n: u32) -> *mut u8; + + /// Restore all QSPI pad controls to their default state, and connect the SSI to the QSPI pads. + b"IF" unsafe fn connect_internal_flash() -> (); + + /// First set up the SSI for serial-mode operations, then issue the fixed XIP exit sequence. + /// + /// Note that the bootrom code uses the IO forcing logic to drive the CS pin, which must be + /// cleared before returning the SSI to XIP mode (e.g. by a call to _flash_flush_cache). This + /// function configures the SSI with a fixed SCK clock divisor of /6. + b"EX" unsafe fn flash_exit_xip() -> (); + + /// Erase a count bytes, starting at addr (offset from start of flash). Optionally, pass a + /// block erase command e.g. D8h block erase, and the size of the block erased by this + /// command — this function will use the larger block erase where possible, for much higher + /// erase speed. addr must be aligned to a 4096-byte sector, and count must be a multiple of + /// 4096 bytes. + b"RE" unsafe fn flash_range_erase(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> (); + + /// Program data to a range of flash addresses starting at `addr` (and + /// offset from the start of flash) and `count` bytes in size. The value + /// `addr` must be aligned to a 256-byte boundary, and `count` must be a + /// multiple of 256. + b"RP" unsafe fn flash_range_program(addr: u32, data: *const u8, count: usize) -> (); + + /// Flush and enable the XIP cache. Also clears the IO forcing on QSPI CSn, so that the SSI can + /// drive the flashchip select as normal. + b"FC" unsafe fn flash_flush_cache() -> (); + + /// Configure the SSI to generate a standard 03h serial read command, with 24 address bits, + /// upon each XIP access. This is a very slow XIP configuration, but is very widely supported. + /// The debugger calls this function after performing a flash erase/programming operation, so + /// that the freshly-programmed code and data is visible to the debug host, without having to + /// know exactly what kind of flash device is connected. + b"CX" unsafe fn flash_enter_cmd_xip() -> (); + + /// This is the method that is entered by core 1 on reset to wait to be launched by core 0. + /// There are few cases where you should call this method (resetting core 1 is much better). + /// This method does not return and should only ever be called on core 1. + b"WV" unsafe fn wait_for_vector() -> !; +} + +// Various C intrinsics in the ROM +intrinsics! { + #[alias = __popcountdi2] + extern "C" fn __popcountsi2(x: u32) -> u32 { + popcount32(x) + } + + #[alias = __clzdi2] + extern "C" fn __clzsi2(x: u32) -> u32 { + clz32(x) + } + + #[alias = __ctzdi2] + extern "C" fn __ctzsi2(x: u32) -> u32 { + ctz32(x) + } + + // __rbit is only unofficial, but it show up in the ARM documentation, + // so may as well hook it up. + #[alias = __rbitl] + extern "C" fn __rbit(x: u32) -> u32 { + reverse32(x) + } + + unsafe extern "aapcs" fn __aeabi_memset(dest: *mut u8, n: usize, c: i32) -> () { + // Different argument order + memset(dest, c as u8, n as u32); + } + + #[alias = __aeabi_memset8] + unsafe extern "aapcs" fn __aeabi_memset4(dest: *mut u8, n: usize, c: i32) -> () { + // Different argument order + memset4(dest as *mut u32, c as u8, n as u32); + } + + unsafe extern "aapcs" fn __aeabi_memclr(dest: *mut u8, n: usize) -> () { + memset(dest, 0, n as u32); + } + + #[alias = __aeabi_memclr8] + unsafe extern "aapcs" fn __aeabi_memclr4(dest: *mut u8, n: usize) -> () { + memset4(dest as *mut u32, 0, n as u32); + } + + unsafe extern "aapcs" fn __aeabi_memcpy(dest: *mut u8, src: *const u8, n: usize) -> () { + memcpy(dest, src, n as u32); + } + + #[alias = __aeabi_memcpy8] + unsafe extern "aapcs" fn __aeabi_memcpy4(dest: *mut u8, src: *const u8, n: usize) -> () { + memcpy44(dest as *mut u32, src as *const u32, n as u32); + } +} + +unsafe fn convert_str(s: *const u8) -> &'static str { + let mut end = s; + while *end != 0 { + end = end.add(1); + } + let s = core::slice::from_raw_parts(s, end.offset_from(s) as usize); + core::str::from_utf8_unchecked(s) +} + +/// The version number of the rom. +pub fn rom_version_number() -> u8 { + unsafe { *VERSION_NUMBER } +} + +/// The Raspberry Pi Trading Ltd copyright string. +pub fn copyright_string() -> &'static str { + let s: *const u8 = rom_table_lookup(DATA_TABLE, *b"CR"); + unsafe { convert_str(s) } +} + +/// The 8 most significant hex digits of the Bootrom git revision. +pub fn git_revision() -> u32 { + let s: *const u32 = rom_table_lookup(DATA_TABLE, *b"GR"); + unsafe { *s } +} + +/// The start address of the floating point library code and data. +/// +/// This and fplib_end along with the individual function pointers in +/// soft_float_table can be used to copy the floating point implementation into +/// RAM if desired. +pub fn fplib_start() -> *const u8 { + rom_table_lookup(DATA_TABLE, *b"FS") +} + +/// See Table 180 in the RP2040 datasheet for the contents of this table. +pub fn soft_float_table() -> *const usize { + rom_table_lookup(DATA_TABLE, *b"SF") +} + +/// The end address of the floating point library code and data. +pub fn fplib_end() -> *const u8 { + rom_table_lookup(DATA_TABLE, *b"FE") +} + +/// This entry is only present in the V2 bootrom. See Table 182 in the RP2040 datasheet for the contents of this table. +pub fn soft_double_table() -> *const usize { + if rom_version_number() < 2 { + panic!( + "Double precision operations require V2 bootrom (found: V{})", + rom_version_number() + ); + } + rom_table_lookup(DATA_TABLE, *b"SD") +} + +/// ROM functions using single-precision arithmetic (i.e. 'f32' in Rust terms) +pub mod float_funcs { + + macro_rules! make_functions { + ( + $( + $(#[$outer:meta])* + $offset:literal $name:ident ( + $( $aname:ident : $aty:ty ),* + ) -> $ret:ty; + )* + ) => { + $( + declare_rom_function! { + $(#[$outer])* + fn $name( $( $aname : $aty ),* ) -> $ret { + let table: *const usize = $crate::rom_data::soft_float_table(); + unsafe { + // This is the entry in the table. Our offset is given as a + // byte offset, but we want the table index (each pointer in + // the table is 4 bytes long) + let entry: *const usize = table.offset($offset / 4); + // Read the pointer from the table + core::ptr::read(entry) as *const u32 + } + } + } + )* + } + } + + make_functions! { + /// Calculates `a + b` + 0x00 fadd(a: f32, b: f32) -> f32; + /// Calculates `a - b` + 0x04 fsub(a: f32, b: f32) -> f32; + /// Calculates `a * b` + 0x08 fmul(a: f32, b: f32) -> f32; + /// Calculates `a / b` + 0x0c fdiv(a: f32, b: f32) -> f32; + + // 0x10 and 0x14 are deprecated + + /// Calculates `sqrt(v)` (or return -Infinity if v is negative) + 0x18 fsqrt(v: f32) -> f32; + /// Converts an f32 to a signed integer, + /// rounding towards -Infinity, and clamping the result to lie within the + /// range `-0x80000000` to `0x7FFFFFFF` + 0x1c float_to_int(v: f32) -> i32; + /// Converts an f32 to an signed fixed point + /// integer representation where n specifies the position of the binary + /// point in the resulting fixed point representation, e.g. + /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, + /// and clamps the resulting integer to lie within the range `0x00000000` to + /// `0xFFFFFFFF` + 0x20 float_to_fix(v: f32, n: i32) -> i32; + /// Converts an f32 to an unsigned integer, + /// rounding towards -Infinity, and clamping the result to lie within the + /// range `0x00000000` to `0xFFFFFFFF` + 0x24 float_to_uint(v: f32) -> u32; + /// Converts an f32 to an unsigned fixed point + /// integer representation where n specifies the position of the binary + /// point in the resulting fixed point representation, e.g. + /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, + /// and clamps the resulting integer to lie within the range `0x00000000` to + /// `0xFFFFFFFF` + 0x28 float_to_ufix(v: f32, n: i32) -> u32; + /// Converts a signed integer to the nearest + /// f32 value, rounding to even on tie + 0x2c int_to_float(v: i32) -> f32; + /// Converts a signed fixed point integer + /// representation to the nearest f32 value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so `f = + /// nearest(v/(2^n))` + 0x30 fix_to_float(v: i32, n: i32) -> f32; + /// Converts an unsigned integer to the nearest + /// f32 value, rounding to even on tie + 0x34 uint_to_float(v: u32) -> f32; + /// Converts an unsigned fixed point integer + /// representation to the nearest f32 value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so `f = + /// nearest(v/(2^n))` + 0x38 ufix_to_float(v: u32, n: i32) -> f32; + /// Calculates the cosine of `angle`. The value + /// of `angle` is in radians, and must be in the range `-1024` to `1024` + 0x3c fcos(angle: f32) -> f32; + /// Calculates the sine of `angle`. The value of + /// `angle` is in radians, and must be in the range `-1024` to `1024` + 0x40 fsin(angle: f32) -> f32; + /// Calculates the tangent of `angle`. The value + /// of `angle` is in radians, and must be in the range `-1024` to `1024` + 0x44 ftan(angle: f32) -> f32; + + // 0x48 is deprecated + + /// Calculates the exponential value of `v`, + /// i.e. `e ** v` + 0x4c fexp(v: f32) -> f32; + /// Calculates the natural logarithm of `v`. If `v <= 0` return -Infinity + 0x50 fln(v: f32) -> f32; + } + + macro_rules! make_functions_v2 { + ( + $( + $(#[$outer:meta])* + $offset:literal $name:ident ( + $( $aname:ident : $aty:ty ),* + ) -> $ret:ty; + )* + ) => { + $( + declare_rom_function! { + $(#[$outer])* + fn $name( $( $aname : $aty ),* ) -> $ret { + if $crate::rom_data::rom_version_number() < 2 { + panic!( + "Floating point function requires V2 bootrom (found: V{})", + $crate::rom_data::rom_version_number() + ); + } + let table: *const usize = $crate::rom_data::soft_float_table(); + unsafe { + // This is the entry in the table. Our offset is given as a + // byte offset, but we want the table index (each pointer in + // the table is 4 bytes long) + let entry: *const usize = table.offset($offset / 4); + // Read the pointer from the table + core::ptr::read(entry) as *const u32 + } + } + } + )* + } + } + + // These are only on BootROM v2 or higher + make_functions_v2! { + /// Compares two floating point numbers, returning: + /// • 0 if a == b + /// • -1 if a < b + /// • 1 if a > b + 0x54 fcmp(a: f32, b: f32) -> i32; + /// Computes the arc tangent of `y/x` using the + /// signs of arguments to determine the correct quadrant + 0x58 fatan2(y: f32, x: f32) -> f32; + /// Converts a signed 64-bit integer to the + /// nearest f32 value, rounding to even on tie + 0x5c int64_to_float(v: i64) -> f32; + /// Converts a signed fixed point 64-bit integer + /// representation to the nearest f32 value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so `f = + /// nearest(v/(2^n))` + 0x60 fix64_to_float(v: i64, n: i32) -> f32; + /// Converts an unsigned 64-bit integer to the + /// nearest f32 value, rounding to even on tie + 0x64 uint64_to_float(v: u64) -> f32; + /// Converts an unsigned fixed point 64-bit + /// integer representation to the nearest f32 value, rounding to even on + /// tie. `n` specifies the position of the binary point in fixed point, so + /// `f = nearest(v/(2^n))` + 0x68 ufix64_to_float(v: u64, n: i32) -> f32; + /// Convert an f32 to a signed 64-bit integer, rounding towards -Infinity, + /// and clamping the result to lie within the range `-0x8000000000000000` to + /// `0x7FFFFFFFFFFFFFFF` + 0x6c float_to_int64(v: f32) -> i64; + /// Converts an f32 to a signed fixed point + /// 64-bit integer representation where n specifies the position of the + /// binary point in the resulting fixed point representation - e.g. `f(0.5f, + /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the + /// resulting integer to lie within the range `-0x8000000000000000` to + /// `0x7FFFFFFFFFFFFFFF` + 0x70 float_to_fix64(v: f32, n: i32) -> f32; + /// Converts an f32 to an unsigned 64-bit + /// integer, rounding towards -Infinity, and clamping the result to lie + /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF` + 0x74 float_to_uint64(v: f32) -> u64; + /// Converts an f32 to an unsigned fixed point + /// 64-bit integer representation where n specifies the position of the + /// binary point in the resulting fixed point representation, e.g. `f(0.5f, + /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the + /// resulting integer to lie within the range `0x0000000000000000` to + /// `0xFFFFFFFFFFFFFFFF` + 0x78 float_to_ufix64(v: f32, n: i32) -> u64; + /// Converts an f32 to an f64. + 0x7c float_to_double(v: f32) -> f64; + } +} + +/// Functions using double-precision arithmetic (i.e. 'f64' in Rust terms) +pub mod double_funcs { + + macro_rules! make_double_funcs { + ( + $( + $(#[$outer:meta])* + $offset:literal $name:ident ( + $( $aname:ident : $aty:ty ),* + ) -> $ret:ty; + )* + ) => { + $( + declare_rom_function! { + $(#[$outer])* + fn $name( $( $aname : $aty ),* ) -> $ret { + let table: *const usize = $crate::rom_data::soft_double_table(); + unsafe { + // This is the entry in the table. Our offset is given as a + // byte offset, but we want the table index (each pointer in + // the table is 4 bytes long) + let entry: *const usize = table.offset($offset / 4); + // Read the pointer from the table + core::ptr::read(entry) as *const u32 + } + } + } + )* + } + } + + make_double_funcs! { + /// Calculates `a + b` + 0x00 dadd(a: f64, b: f64) -> f64; + /// Calculates `a - b` + 0x04 dsub(a: f64, b: f64) -> f64; + /// Calculates `a * b` + 0x08 dmul(a: f64, b: f64) -> f64; + /// Calculates `a / b` + 0x0c ddiv(a: f64, b: f64) -> f64; + + // 0x10 and 0x14 are deprecated + + /// Calculates `sqrt(v)` (or return -Infinity if v is negative) + 0x18 dsqrt(v: f64) -> f64; + /// Converts an f64 to a signed integer, + /// rounding towards -Infinity, and clamping the result to lie within the + /// range `-0x80000000` to `0x7FFFFFFF` + 0x1c double_to_int(v: f64) -> i32; + /// Converts an f64 to an signed fixed point + /// integer representation where n specifies the position of the binary + /// point in the resulting fixed point representation, e.g. + /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, + /// and clamps the resulting integer to lie within the range `0x00000000` to + /// `0xFFFFFFFF` + 0x20 double_to_fix(v: f64, n: i32) -> i32; + /// Converts an f64 to an unsigned integer, + /// rounding towards -Infinity, and clamping the result to lie within the + /// range `0x00000000` to `0xFFFFFFFF` + 0x24 double_to_uint(v: f64) -> u32; + /// Converts an f64 to an unsigned fixed point + /// integer representation where n specifies the position of the binary + /// point in the resulting fixed point representation, e.g. + /// `f(0.5f, 16) == 0x8000`. This method rounds towards -Infinity, + /// and clamps the resulting integer to lie within the range `0x00000000` to + /// `0xFFFFFFFF` + 0x28 double_to_ufix(v: f64, n: i32) -> u32; + /// Converts a signed integer to the nearest + /// double value, rounding to even on tie + 0x2c int_to_double(v: i32) -> f64; + /// Converts a signed fixed point integer + /// representation to the nearest double value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so `f = + /// nearest(v/(2^n))` + 0x30 fix_to_double(v: i32, n: i32) -> f64; + /// Converts an unsigned integer to the nearest + /// double value, rounding to even on tie + 0x34 uint_to_double(v: u32) -> f64; + /// Converts an unsigned fixed point integer + /// representation to the nearest double value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so f = + /// nearest(v/(2^n)) + 0x38 ufix_to_double(v: u32, n: i32) -> f64; + /// Calculates the cosine of `angle`. The value + /// of `angle` is in radians, and must be in the range `-1024` to `1024` + 0x3c dcos(angle: f64) -> f64; + /// Calculates the sine of `angle`. The value of + /// `angle` is in radians, and must be in the range `-1024` to `1024` + 0x40 dsin(angle: f64) -> f64; + /// Calculates the tangent of `angle`. The value + /// of `angle` is in radians, and must be in the range `-1024` to `1024` + 0x44 dtan(angle: f64) -> f64; + + // 0x48 is deprecated + + /// Calculates the exponential value of `v`, + /// i.e. `e ** v` + 0x4c dexp(v: f64) -> f64; + /// Calculates the natural logarithm of v. If v <= 0 return -Infinity + 0x50 dln(v: f64) -> f64; + + // These are only on BootROM v2 or higher + + /// Compares two floating point numbers, returning: + /// • 0 if a == b + /// • -1 if a < b + /// • 1 if a > b + 0x54 dcmp(a: f64, b: f64) -> i32; + /// Computes the arc tangent of `y/x` using the + /// signs of arguments to determine the correct quadrant + 0x58 datan2(y: f64, x: f64) -> f64; + /// Converts a signed 64-bit integer to the + /// nearest double value, rounding to even on tie + 0x5c int64_to_double(v: i64) -> f64; + /// Converts a signed fixed point 64-bit integer + /// representation to the nearest double value, rounding to even on tie. `n` + /// specifies the position of the binary point in fixed point, so `f = + /// nearest(v/(2^n))` + 0x60 fix64_to_doubl(v: i64, n: i32) -> f64; + /// Converts an unsigned 64-bit integer to the + /// nearest double value, rounding to even on tie + 0x64 uint64_to_double(v: u64) -> f64; + /// Converts an unsigned fixed point 64-bit + /// integer representation to the nearest double value, rounding to even on + /// tie. `n` specifies the position of the binary point in fixed point, so + /// `f = nearest(v/(2^n))` + 0x68 ufix64_to_double(v: u64, n: i32) -> f64; + /// Convert an f64 to a signed 64-bit integer, rounding towards -Infinity, + /// and clamping the result to lie within the range `-0x8000000000000000` to + /// `0x7FFFFFFFFFFFFFFF` + 0x6c double_to_int64(v: f64) -> i64; + /// Converts an f64 to a signed fixed point + /// 64-bit integer representation where n specifies the position of the + /// binary point in the resulting fixed point representation - e.g. `f(0.5f, + /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the + /// resulting integer to lie within the range `-0x8000000000000000` to + /// `0x7FFFFFFFFFFFFFFF` + 0x70 double_to_fix64(v: f64, n: i32) -> i64; + /// Converts an f64 to an unsigned 64-bit + /// integer, rounding towards -Infinity, and clamping the result to lie + /// within the range `0x0000000000000000` to `0xFFFFFFFFFFFFFFFF` + 0x74 double_to_uint64(v: f64) -> u64; + /// Converts an f64 to an unsigned fixed point + /// 64-bit integer representation where n specifies the position of the + /// binary point in the resulting fixed point representation, e.g. `f(0.5f, + /// 16) == 0x8000`. This method rounds towards -Infinity, and clamps the + /// resulting integer to lie within the range `0x0000000000000000` to + /// `0xFFFFFFFFFFFFFFFF` + 0x78 double_to_ufix64(v: f64, n: i32) -> u64; + /// Converts an f64 to an f32 + 0x7c double_to_float(v: f64) -> f32; + } +}