Merge branch 'master' of https://github.com/akiles/embassy into stm32f4

This commit is contained in:
xoviat 2020-12-30 13:17:47 -06:00
commit de2b1adafe
24 changed files with 1562 additions and 635 deletions

View File

@ -98,3 +98,65 @@ pub fn task(args: TokenStream, item: TokenStream) -> TokenStream {
};
result.into()
}
#[proc_macro]
pub fn interrupt_declare(item: TokenStream) -> TokenStream {
let name = syn::parse_macro_input!(item as syn::Ident);
let name = format_ident!("{}", name);
let name_interrupt = format_ident!("{}Interrupt", name);
let name_handler = format!("__EMBASSY_{}_HANDLER", name);
let result = quote! {
#[allow(non_camel_case_types)]
pub struct #name_interrupt(());
unsafe impl OwnedInterrupt for #name_interrupt {
type Priority = Priority;
fn number(&self) -> u8 {
Interrupt::#name as u8
}
unsafe fn __handler(&self) -> &'static ::core::sync::atomic::AtomicPtr<u32> {
#[export_name = #name_handler]
static HANDLER: ::core::sync::atomic::AtomicPtr<u32> = ::core::sync::atomic::AtomicPtr::new(::core::ptr::null_mut());
&HANDLER
}
}
};
result.into()
}
#[proc_macro]
pub fn interrupt_take(item: TokenStream) -> TokenStream {
let name = syn::parse_macro_input!(item as syn::Ident);
let name = format!("{}", name);
let name_interrupt = format_ident!("{}Interrupt", name);
let name_handler = format!("__EMBASSY_{}_HANDLER", name);
let result = quote! {
{
#[allow(non_snake_case)]
#[export_name = #name]
pub unsafe extern "C" fn trampoline() {
extern "C" {
#[link_name = #name_handler]
static HANDLER: ::core::sync::atomic::AtomicPtr<u32>;
}
let p = HANDLER.load(::core::sync::atomic::Ordering::Acquire);
if !p.is_null() {
let f: fn() = ::core::mem::transmute(p);
f()
}
}
static TAKEN: ::core::sync::atomic::AtomicBool = ::core::sync::atomic::AtomicBool::new(false);
if TAKEN.compare_exchange(false, true, ::core::sync::atomic::Ordering::AcqRel, ::core::sync::atomic::Ordering::Acquire).is_err() {
panic!("IRQ Already taken");
}
let irq: interrupt::#name_interrupt = unsafe { ::core::mem::transmute(()) };
irq
}
};
result.into()
}

View File

@ -26,6 +26,7 @@ log = { version = "0.4.11", optional = true }
cortex-m-rt = "0.6.13"
cortex-m = { version = "0.6.4" }
embedded-hal = { version = "0.2.4" }
embedded-dma = { version = "0.1.2" }
nrf52810-pac = { version = "0.9.0", optional = true }
nrf52811-pac = { version = "0.9.1", optional = true }

View File

@ -0,0 +1,557 @@
//! HAL interface to the UARTE peripheral
//!
//! See product specification:
//!
//! - nrf52832: Section 35
//! - nrf52840: Section 6.34
use core::cell::UnsafeCell;
use core::cmp::min;
use core::marker::PhantomPinned;
use core::ops::Deref;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embedded_hal::digital::v2::OutputPin;
use crate::hal::gpio::{Floating, Input, Output, Pin as GpioPin, Port as GpioPort, PushPull};
use crate::interrupt;
use crate::interrupt::{CriticalSection, OwnedInterrupt};
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
use crate::pac::UARTE1;
use crate::pac::{uarte0, UARTE0};
// Re-export SVD variants to allow user to directly set values
pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
use embassy::util::WakerStore;
use crate::fmt::{assert, panic, todo, *};
//use crate::trace;
const RINGBUF_SIZE: usize = 512;
struct RingBuf {
buf: [u8; RINGBUF_SIZE],
start: usize,
end: usize,
empty: bool,
}
impl RingBuf {
fn new() -> Self {
RingBuf {
buf: [0; RINGBUF_SIZE],
start: 0,
end: 0,
empty: true,
}
}
fn push_buf(&mut self) -> &mut [u8] {
if self.start == self.end && !self.empty {
trace!(" ringbuf: push_buf empty");
return &mut self.buf[..0];
}
let n = if self.start <= self.end {
RINGBUF_SIZE - self.end
} else {
self.start - self.end
};
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
&mut self.buf[self.end..self.end + n]
}
fn push(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
if n == 0 {
return;
}
self.end = Self::wrap(self.end + n);
self.empty = false;
}
fn pop_buf(&mut self) -> &mut [u8] {
if self.empty {
trace!(" ringbuf: pop_buf empty");
return &mut self.buf[..0];
}
let n = if self.end <= self.start {
RINGBUF_SIZE - self.start
} else {
self.end - self.start
};
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
&mut self.buf[self.start..self.start + n]
}
fn pop(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
if n == 0 {
return;
}
self.start = Self::wrap(self.start + n);
self.empty = self.start == self.end;
}
fn wrap(n: usize) -> usize {
assert!(n <= RINGBUF_SIZE);
if n == RINGBUF_SIZE {
0
} else {
n
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
ReceivingReady,
Stopping,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// Interface to a UARTE instance
///
/// This is a very basic interface that comes with the following limitations:
/// - The UARTE instances share the same address space with instances of UART.
/// You need to make sure that conflicting instances
/// are disabled before using `Uarte`. See product specification:
/// - nrf52832: Section 15.2
/// - nrf52840: Section 6.1.2
pub struct BufferedUarte<T: Instance> {
started: bool,
state: UnsafeCell<UarteState<T>>,
}
// public because it needs to be used in Instance::{get_state, set_state}, but
// should not be used outside the module
#[doc(hidden)]
pub struct UarteState<T: Instance> {
inner: T,
irq: T::Interrupt,
rx: RingBuf,
rx_state: RxState,
rx_waker: WakerStore,
tx: RingBuf,
tx_state: TxState,
tx_waker: WakerStore,
_pin: PhantomPinned,
}
#[cfg(any(feature = "52833", feature = "52840"))]
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl<T: Instance> BufferedUarte<T> {
pub fn new(
uarte: T,
irq: T::Interrupt,
mut pins: Pins,
parity: Parity,
baudrate: Baudrate,
) -> Self {
// Select pins
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pins.txd.port()));
w.connect().connected()
});
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
let w = unsafe { w.pin().bits(pin.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
let w = unsafe { w.pin().bits(pin.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
// Enable UARTE instance
uarte.enable.write(|w| w.enable().enabled());
// Enable interrupts
uarte.intenset.write(|w| w.endrx().set().endtx().set());
// Configure
let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
uarte
.config
.write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
// Configure frequency
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
BufferedUarte {
started: false,
state: UnsafeCell::new(UarteState {
inner: uarte,
irq,
rx: RingBuf::new(),
rx_state: RxState::Idle,
rx_waker: WakerStore::new(),
tx: RingBuf::new(),
tx_state: TxState::Idle,
tx_waker: WakerStore::new(),
_pin: PhantomPinned,
}),
}
}
fn with_state<'a, R>(
self: Pin<&'a mut Self>,
f: impl FnOnce(Pin<&'a mut UarteState<T>>) -> R,
) -> R {
let Self { state, started } = unsafe { self.get_unchecked_mut() };
interrupt::free(|cs| {
let ptr = state.get();
if !*started {
T::set_state(cs, ptr);
*started = true;
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
unsafe { Pin::new_unchecked(&mut *ptr) }.start();
}
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
f(unsafe { Pin::new_unchecked(&mut *ptr) })
})
}
}
impl<T: Instance> Drop for BufferedUarte<T> {
fn drop(&mut self) {
// stop DMA before dropping, because DMA is using the buffer in `self`.
todo!()
}
}
impl<T: Instance> AsyncBufRead for BufferedUarte<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
self.with_state(|s| s.poll_fill_buf(cx))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.with_state(|s| s.consume(amt))
}
}
impl<T: Instance> AsyncWrite for BufferedUarte<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
self.with_state(|s| s.poll_write(cx, buf))
}
}
impl<T: Instance> UarteState<T> {
pub fn start(self: Pin<&mut Self>) {
self.irq.set_handler(|| unsafe {
interrupt::free(|cs| T::get_state(cs).as_mut().unwrap().on_interrupt());
});
self.irq.pend();
self.irq.enable();
}
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let this = unsafe { self.get_unchecked_mut() };
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
// We have data ready in buffer? Return it.
let buf = this.rx.pop_buf();
if buf.len() != 0 {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
return Poll::Ready(Ok(buf));
}
trace!(" empty");
if this.rx_state == RxState::ReceivingReady {
trace!(" stopping");
this.rx_state = RxState::Stopping;
this.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
}
this.rx_waker.store(cx.waker());
Poll::Pending
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = unsafe { self.get_unchecked_mut() };
trace!("consume {:?}", amt);
this.rx.pop(amt);
this.irq.pend();
}
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let this = unsafe { self.get_unchecked_mut() };
trace!("poll_write: {:?}", buf.len());
let tx_buf = this.tx.push_buf();
if tx_buf.len() == 0 {
trace!("poll_write: pending");
this.tx_waker.store(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
this.tx.push(n);
trace!("poll_write: queued {:?}", n);
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
this.irq.pend();
Poll::Ready(Ok(n))
}
fn on_interrupt(&mut self) {
trace!("irq: start");
let mut more_work = true;
while more_work {
more_work = false;
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy?????");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
panic!("unexpected endrx");
}
let buf = self.rx.push_buf();
if buf.len() != 0 {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
self.inner.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Enable RXRDY interrupt.
self.inner.events_rxdrdy.reset();
self.inner.intenset.write(|w| w.rxdrdy().set());
// Start UARTE Receive transaction
self.inner.tasks_startrx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
// Disable the RXRDY event interrupt
// RXRDY is triggered for every byte, but we only care about whether we have
// some bytes or not. So as soon as we have at least one, disable it, to avoid
// wasting CPU cycles in interrupts.
self.inner.intenclr.write(|w| w.rxdrdy().clear());
self.inner.events_rxdrdy.reset();
self.rx_waker.wake();
self.rx_state = RxState::ReceivingReady;
more_work = true; // in case we also have endrx pending
}
}
RxState::ReceivingReady | RxState::Stopping => {
trace!(" irq_rx: in state ReceivingReady");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
self.inner.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
more_work = true; // start another rx if possible
}
}
}
}
more_work = true;
while more_work {
more_work = false;
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if buf.len() != 0 {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
self.inner.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
self.inner.tasks_starttx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if self.inner.events_endtx.read().bits() != 0 {
self.inner.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
more_work = true; // start another tx if possible
}
}
}
}
trace!("irq: end");
}
}
pub struct Pins {
pub rxd: GpioPin<Input<Floating>>,
pub txd: GpioPin<Output<PushPull>>,
pub cts: Option<GpioPin<Input<Floating>>>,
pub rts: Option<GpioPin<Output<PushPull>>>,
}
mod private {
pub trait Sealed {}
impl Sealed for crate::pac::UARTE0 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Sealed for crate::pac::UARTE1 {}
}
pub trait Instance: Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed {
type Interrupt: OwnedInterrupt;
#[doc(hidden)]
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self>;
#[doc(hidden)]
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>);
}
static mut UARTE0_STATE: *mut UarteState<UARTE0> = ptr::null_mut();
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
static mut UARTE1_STATE: *mut UarteState<UARTE1> = ptr::null_mut();
impl Instance for UARTE0 {
type Interrupt = interrupt::UARTE0_UART0Interrupt;
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE0_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE0_STATE = state } // Safe because of CriticalSection
}
}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Instance for UARTE1 {
type Interrupt = interrupt::UARTE1Interrupt;
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE1_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE1_STATE = state } // Safe because of CriticalSection
}
}

View File

@ -7,6 +7,7 @@ use embassy::util::Signal;
use crate::hal::gpio::{Input, Level, Output, Pin, Port};
use crate::interrupt;
use crate::interrupt::OwnedInterrupt;
use crate::pac::generic::Reg;
use crate::pac::gpiote::_TASKS_OUT;
#[cfg(any(feature = "52833", feature = "52840"))]
@ -58,7 +59,7 @@ pub enum NewChannelError {
}
impl Gpiote {
pub fn new(gpiote: GPIOTE) -> Self {
pub fn new(gpiote: GPIOTE, irq: interrupt::GPIOTEInterrupt) -> Self {
#[cfg(any(feature = "52833", feature = "52840"))]
let ports = unsafe { &[&*P0::ptr(), &*P1::ptr()] };
#[cfg(not(any(feature = "52833", feature = "52840")))]
@ -74,8 +75,9 @@ impl Gpiote {
// Enable interrupts
gpiote.events_port.write(|w| w);
gpiote.intenset.write(|w| w.port().set());
interrupt::unpend(interrupt::GPIOTE);
interrupt::enable(interrupt::GPIOTE);
irq.set_handler(Self::on_irq);
irq.unpend();
irq.enable();
Self {
inner: gpiote,
@ -293,6 +295,39 @@ impl Gpiote {
})
})
}
unsafe fn on_irq() {
let s = &(*INSTANCE);
for i in 0..8 {
if s.inner.events_in[i].read().bits() != 0 {
s.inner.events_in[i].write(|w| w);
s.channel_signals[i].signal(());
}
}
if s.inner.events_port.read().bits() != 0 {
s.inner.events_port.write(|w| w);
#[cfg(any(feature = "52833", feature = "52840"))]
let ports = &[&*P0::ptr(), &*P1::ptr()];
#[cfg(not(any(feature = "52833", feature = "52840")))]
let ports = &[&*P0::ptr()];
let mut work = true;
while work {
work = false;
for (port, &p) in ports.iter().enumerate() {
for pin in BitIter(p.latch.read().bits()) {
work = true;
p.pin_cnf[pin as usize].modify(|_, w| w.sense().disabled());
p.latch.write(|w| w.bits(1 << pin));
s.port_signals[port * 32 + pin as usize].signal(());
}
}
}
}
}
}
pub struct PortInputFuture<'a, T> {
@ -413,40 +448,6 @@ impl<'a> OutputChannel<'a> {
}
}
#[interrupt]
unsafe fn GPIOTE() {
let s = &(*INSTANCE);
for i in 0..8 {
if s.inner.events_in[i].read().bits() != 0 {
s.inner.events_in[i].write(|w| w);
s.channel_signals[i].signal(());
}
}
if s.inner.events_port.read().bits() != 0 {
s.inner.events_port.write(|w| w);
#[cfg(any(feature = "52833", feature = "52840"))]
let ports = &[&*P0::ptr(), &*P1::ptr()];
#[cfg(not(any(feature = "52833", feature = "52840")))]
let ports = &[&*P0::ptr()];
let mut work = true;
while work {
work = false;
for (port, &p) in ports.iter().enumerate() {
for pin in BitIter(p.latch.read().bits()) {
work = true;
p.pin_cnf[pin as usize].modify(|_, w| w.sense().disabled());
p.latch.write(|w| w.bits(1 << pin));
s.port_signals[port * 32 + pin as usize].signal(());
}
}
}
}
}
struct BitIter(u32);
impl Iterator for BitIter {

View File

@ -5,12 +5,13 @@
use core::sync::atomic::{compiler_fence, Ordering};
use crate::pac::{NVIC, NVIC_PRIO_BITS};
use crate::pac::NVIC_PRIO_BITS;
// Re-exports
pub use crate::pac::Interrupt;
pub use crate::pac::Interrupt::*; // needed for cortex-m-rt #[interrupt]
pub use cortex_m::interrupt::{CriticalSection, Mutex};
pub use embassy::interrupt::{declare, take, OwnedInterrupt};
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -26,14 +27,8 @@ pub enum Priority {
Level7 = 7,
}
impl Priority {
#[inline]
fn to_nvic(self) -> u8 {
(self as u8) << (8 - NVIC_PRIO_BITS)
}
#[inline]
fn from_nvic(priority: u8) -> Self {
impl From<u8> for Priority {
fn from(priority: u8) -> Self {
match priority >> (8 - NVIC_PRIO_BITS) {
0 => Self::Level0,
1 => Self::Level1,
@ -48,6 +43,12 @@ impl Priority {
}
}
impl From<Priority> for u8 {
fn from(p: Priority) -> Self {
(p as u8) << (8 - NVIC_PRIO_BITS)
}
}
#[inline]
pub fn free<F, R>(f: F) -> R
where
@ -77,53 +78,204 @@ where
}
}
#[inline]
pub fn enable(irq: Interrupt) {
unsafe {
NVIC::unmask(irq);
}
#[cfg(feature = "52810")]
mod irqs {
use super::*;
declare!(POWER_CLOCK);
declare!(RADIO);
declare!(UARTE0_UART0);
declare!(TWIM0_TWIS0_TWI0);
declare!(SPIM0_SPIS0_SPI0);
declare!(GPIOTE);
declare!(SAADC);
declare!(TIMER0);
declare!(TIMER1);
declare!(TIMER2);
declare!(RTC0);
declare!(TEMP);
declare!(RNG);
declare!(ECB);
declare!(CCM_AAR);
declare!(WDT);
declare!(RTC1);
declare!(QDEC);
declare!(COMP);
declare!(SWI0_EGU0);
declare!(SWI1_EGU1);
declare!(SWI2);
declare!(SWI3);
declare!(SWI4);
declare!(SWI5);
declare!(PWM0);
declare!(PDM);
}
#[inline]
pub fn disable(irq: Interrupt) {
NVIC::mask(irq);
#[cfg(feature = "52811")]
mod irqs {
use super::*;
declare!(POWER_CLOCK);
declare!(RADIO);
declare!(UARTE0_UART0);
declare!(TWIM0_TWIS0_TWI0_SPIM1_SPIS1_SPI1);
declare!(SPIM0_SPIS0_SPI0);
declare!(GPIOTE);
declare!(SAADC);
declare!(TIMER0);
declare!(TIMER1);
declare!(TIMER2);
declare!(RTC0);
declare!(TEMP);
declare!(RNG);
declare!(ECB);
declare!(CCM_AAR);
declare!(WDT);
declare!(RTC1);
declare!(QDEC);
declare!(COMP);
declare!(SWI0_EGU0);
declare!(SWI1_EGU1);
declare!(SWI2);
declare!(SWI3);
declare!(SWI4);
declare!(SWI5);
declare!(PWM0);
declare!(PDM);
}
#[inline]
pub fn is_active(irq: Interrupt) -> bool {
NVIC::is_active(irq)
#[cfg(feature = "52832")]
mod irqs {
use super::*;
declare!(POWER_CLOCK);
declare!(RADIO);
declare!(UARTE0_UART0);
declare!(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0);
declare!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
declare!(NFCT);
declare!(GPIOTE);
declare!(SAADC);
declare!(TIMER0);
declare!(TIMER1);
declare!(TIMER2);
declare!(RTC0);
declare!(TEMP);
declare!(RNG);
declare!(ECB);
declare!(CCM_AAR);
declare!(WDT);
declare!(RTC1);
declare!(QDEC);
declare!(COMP_LPCOMP);
declare!(SWI0_EGU0);
declare!(SWI1_EGU1);
declare!(SWI2_EGU2);
declare!(SWI3_EGU3);
declare!(SWI4_EGU4);
declare!(SWI5_EGU5);
declare!(TIMER3);
declare!(TIMER4);
declare!(PWM0);
declare!(PDM);
declare!(MWU);
declare!(PWM1);
declare!(PWM2);
declare!(SPIM2_SPIS2_SPI2);
declare!(RTC2);
declare!(I2S);
declare!(FPU);
}
#[inline]
pub fn is_enabled(irq: Interrupt) -> bool {
NVIC::is_enabled(irq)
#[cfg(feature = "52833")]
mod irqs {
use super::*;
declare!(POWER_CLOCK);
declare!(RADIO);
declare!(UARTE0_UART0);
declare!(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0);
declare!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
declare!(NFCT);
declare!(GPIOTE);
declare!(SAADC);
declare!(TIMER0);
declare!(TIMER1);
declare!(TIMER2);
declare!(RTC0);
declare!(TEMP);
declare!(RNG);
declare!(ECB);
declare!(CCM_AAR);
declare!(WDT);
declare!(RTC1);
declare!(QDEC);
declare!(COMP_LPCOMP);
declare!(SWI0_EGU0);
declare!(SWI1_EGU1);
declare!(SWI2_EGU2);
declare!(SWI3_EGU3);
declare!(SWI4_EGU4);
declare!(SWI5_EGU5);
declare!(TIMER3);
declare!(TIMER4);
declare!(PWM0);
declare!(PDM);
declare!(MWU);
declare!(PWM1);
declare!(PWM2);
declare!(SPIM2_SPIS2_SPI2);
declare!(RTC2);
declare!(I2S);
declare!(FPU);
declare!(USBD);
declare!(UARTE1);
declare!(PWM3);
declare!(SPIM3);
}
#[inline]
pub fn is_pending(irq: Interrupt) -> bool {
NVIC::is_pending(irq)
#[cfg(feature = "52840")]
mod irqs {
use super::*;
declare!(POWER_CLOCK);
declare!(RADIO);
declare!(UARTE0_UART0);
declare!(SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0);
declare!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
declare!(NFCT);
declare!(GPIOTE);
declare!(SAADC);
declare!(TIMER0);
declare!(TIMER1);
declare!(TIMER2);
declare!(RTC0);
declare!(TEMP);
declare!(RNG);
declare!(ECB);
declare!(CCM_AAR);
declare!(WDT);
declare!(RTC1);
declare!(QDEC);
declare!(COMP_LPCOMP);
declare!(SWI0_EGU0);
declare!(SWI1_EGU1);
declare!(SWI2_EGU2);
declare!(SWI3_EGU3);
declare!(SWI4_EGU4);
declare!(SWI5_EGU5);
declare!(TIMER3);
declare!(TIMER4);
declare!(PWM0);
declare!(PDM);
declare!(MWU);
declare!(PWM1);
declare!(PWM2);
declare!(SPIM2_SPIS2_SPI2);
declare!(RTC2);
declare!(I2S);
declare!(FPU);
declare!(USBD);
declare!(UARTE1);
declare!(QSPI);
declare!(CRYPTOCELL);
declare!(PWM3);
declare!(SPIM3);
}
#[inline]
pub fn pend(irq: Interrupt) {
NVIC::pend(irq)
}
#[inline]
pub fn unpend(irq: Interrupt) {
NVIC::unpend(irq)
}
#[inline]
pub fn get_priority(irq: Interrupt) -> Priority {
Priority::from_nvic(NVIC::get_priority(irq))
}
#[inline]
pub fn set_priority(irq: Interrupt, prio: Priority) {
unsafe {
cortex_m::peripheral::Peripherals::steal()
.NVIC
.set_priority(irq, prio.to_nvic())
}
}
pub use irqs::*;

View File

@ -51,6 +51,7 @@ pub use nrf52840_hal as hal;
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
pub mod buffered_uarte;
pub mod gpiote;
pub mod interrupt;
#[cfg(feature = "52840")]

View File

@ -2,6 +2,7 @@ use crate::fmt::{assert, assert_eq, panic, *};
use core::future::Future;
use crate::hal::gpio::{Output, Pin as GpioPin, Port as GpioPort, PushPull};
use crate::interrupt::{OwnedInterrupt, QSPIInterrupt};
use crate::pac::{Interrupt, QSPI};
pub use crate::pac::qspi::ifconfig0::ADDRMODE_A as AddressMode;
@ -22,8 +23,6 @@ pub use crate::pac::qspi::ifconfig0::WRITEOC_A as WriteOpcode;
use embassy::flash::{Error, Flash};
use embassy::util::{DropBomb, Signal};
use crate::interrupt;
pub struct Pins {
pub sck: GpioPin<Output<PushPull>>,
pub csn: GpioPin<Output<PushPull>>,
@ -59,7 +58,7 @@ fn port_bit(port: GpioPort) -> bool {
}
impl Qspi {
pub fn new(qspi: QSPI, config: Config) -> Self {
pub fn new(qspi: QSPI, irq: QSPIInterrupt, config: Config) -> Self {
qspi.psel.sck.write(|w| {
let pin = &config.pins.sck;
let w = unsafe { w.pin().bits(pin.pin()) };
@ -146,9 +145,10 @@ impl Qspi {
// Enable READY interrupt
SIGNAL.reset();
qspi.intenset.write(|w| w.ready().set());
interrupt::set_priority(Interrupt::QSPI, interrupt::Priority::Level7);
interrupt::unpend(Interrupt::QSPI);
interrupt::enable(Interrupt::QSPI);
irq.set_handler(irq_handler);
irq.unpend();
irq.enable();
Self { inner: qspi }
}
@ -347,8 +347,7 @@ impl Flash for Qspi {
static SIGNAL: Signal<()> = Signal::new();
#[interrupt]
unsafe fn QSPI() {
unsafe fn irq_handler() {
let p = crate::pac::Peripherals::steal().QSPI;
if p.events_ready.read().events_ready().bit_is_set() {
p.events_ready.reset();

View File

@ -2,10 +2,10 @@ use core::cell::Cell;
use core::ops::Deref;
use core::sync::atomic::{AtomicU32, Ordering};
use embassy::time::Clock;
use embassy::time::{Clock, Instant};
use crate::interrupt;
use crate::interrupt::{CriticalSection, Mutex};
use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt};
use crate::pac::{rtc0, Interrupt, RTC0, RTC1};
#[cfg(any(feature = "52832", feature = "52833", feature = "52840"))]
@ -56,8 +56,9 @@ impl AlarmState {
const ALARM_COUNT: usize = 3;
pub struct RTC<T> {
pub struct RTC<T: Instance> {
rtc: T,
irq: T::Interrupt,
/// Number of 2^23 periods elapsed since boot.
///
@ -75,13 +76,14 @@ pub struct RTC<T> {
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
}
unsafe impl<T> Send for RTC<T> {}
unsafe impl<T> Sync for RTC<T> {}
unsafe impl<T: Instance> Send for RTC<T> {}
unsafe impl<T: Instance> Sync for RTC<T> {}
impl<T: Instance> RTC<T> {
pub fn new(rtc: T) -> Self {
pub fn new(rtc: T, irq: T::Interrupt) -> Self {
Self {
rtc,
irq,
period: AtomicU32::new(0),
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
}
@ -103,7 +105,10 @@ impl<T: Instance> RTC<T> {
while self.rtc.counter.read().bits() != 0 {}
T::set_rtc_instance(self);
interrupt::enable(T::INTERRUPT);
self.irq
.set_handler(|| T::get_rtc_instance().on_interrupt());
self.irq.unpend();
self.irq.enable();
}
fn on_interrupt(&self) {
@ -234,18 +239,18 @@ impl<T: Instance> embassy::time::Alarm for Alarm<T> {
/// Implemented by all RTC instances.
pub trait Instance: Deref<Target = rtc0::RegisterBlock> + Sized + 'static {
/// The interrupt associated with this RTC instance.
const INTERRUPT: Interrupt;
type Interrupt: OwnedInterrupt;
fn set_rtc_instance(rtc: &'static RTC<Self>);
fn get_rtc_instance() -> &'static RTC<Self>;
}
macro_rules! impl_instance {
($name:ident, $static_name:ident) => {
($name:ident, $irq_name:path, $static_name:ident) => {
static mut $static_name: Option<&'static RTC<$name>> = None;
impl Instance for $name {
const INTERRUPT: Interrupt = Interrupt::$name;
type Interrupt = $irq_name;
fn set_rtc_instance(rtc: &'static RTC<Self>) {
unsafe { $static_name = Some(rtc) }
}
@ -253,16 +258,11 @@ macro_rules! impl_instance {
unsafe { $static_name.unwrap() }
}
}
#[interrupt]
fn $name() {
$name::get_rtc_instance().on_interrupt();
}
};
}
impl_instance!(RTC0, RTC0_INSTANCE);
impl_instance!(RTC1, RTC1_INSTANCE);
impl_instance!(RTC0, interrupt::RTC0Interrupt, RTC0_INSTANCE);
impl_instance!(RTC1, interrupt::RTC1Interrupt, RTC1_INSTANCE);
#[cfg(any(feature = "52832", feature = "52833", feature = "52840"))]
impl_instance!(RTC2, RTC2_INSTANCE);
impl_instance!(RTC2, interrupt::RTC2Interrupt, RTC2_INSTANCE);

View File

@ -1,160 +1,46 @@
//! HAL interface to the UARTE peripheral
//! Async low power UARTE.
//!
//! See product specification:
//!
//! - nrf52832: Section 35
//! - nrf52840: Section 6.34
use core::cell::UnsafeCell;
use core::cmp::min;
use core::marker::PhantomPinned;
//! The peripheral is automatically enabled and disabled as required to save power.
//! Lowest power consumption can only be guaranteed if the send receive futures
//! are dropped correctly (e.g. not using `mem::forget()`).
use core::future::Future;
use core::ops::Deref;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embedded_hal::digital::v2::OutputPin;
use embassy::util::Signal;
use embedded_dma::{ReadBuffer, WriteBuffer};
use crate::hal::gpio::{Floating, Input, Output, Pin as GpioPin, Port as GpioPort, PushPull};
use crate::fmt::{assert, *};
#[cfg(any(feature = "52833", feature = "52840"))]
use crate::hal::gpio::Port as GpioPort;
use crate::hal::pac;
use crate::hal::prelude::*;
use crate::hal::target_constants::EASY_DMA_SIZE;
use crate::interrupt;
use crate::interrupt::CriticalSection;
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
use crate::pac::UARTE1;
use crate::pac::{uarte0, Interrupt, UARTE0};
use crate::interrupt::OwnedInterrupt;
// Re-export SVD variants to allow user to directly set values
pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
pub use crate::hal::uarte::Pins;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
use embassy::util::WakerStore;
use crate::fmt::{assert, panic, todo, *};
//use crate::trace;
const RINGBUF_SIZE: usize = 512;
struct RingBuf {
buf: [u8; RINGBUF_SIZE],
start: usize,
end: usize,
empty: bool,
/// Interface to the UARTE peripheral
pub struct Uarte<T>
where
T: Instance,
{
instance: T,
irq: T::Interrupt,
pins: Pins,
}
impl RingBuf {
fn new() -> Self {
RingBuf {
buf: [0; RINGBUF_SIZE],
start: 0,
end: 0,
empty: true,
}
}
fn push_buf(&mut self) -> &mut [u8] {
if self.start == self.end && !self.empty {
trace!(" ringbuf: push_buf empty");
return &mut self.buf[..0];
}
let n = if self.start <= self.end {
RINGBUF_SIZE - self.end
} else {
self.start - self.end
};
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
&mut self.buf[self.end..self.end + n]
}
fn push(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
if n == 0 {
return;
}
self.end = Self::wrap(self.end + n);
self.empty = false;
}
fn pop_buf(&mut self) -> &mut [u8] {
if self.empty {
trace!(" ringbuf: pop_buf empty");
return &mut self.buf[..0];
}
let n = if self.end <= self.start {
RINGBUF_SIZE - self.start
} else {
self.end - self.start
};
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
&mut self.buf[self.start..self.start + n]
}
fn pop(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
if n == 0 {
return;
}
self.start = Self::wrap(self.start + n);
self.empty = self.start == self.end;
}
fn wrap(n: usize) -> usize {
assert!(n <= RINGBUF_SIZE);
if n == RINGBUF_SIZE {
0
} else {
n
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
ReceivingReady,
Stopping,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// Interface to a UARTE instance
///
/// This is a very basic interface that comes with the following limitations:
/// - The UARTE instances share the same address space with instances of UART.
/// You need to make sure that conflicting instances
/// are disabled before using `Uarte`. See product specification:
/// - nrf52832: Section 15.2
/// - nrf52840: Section 6.1.2
pub struct Uarte<T: Instance> {
started: bool,
state: UnsafeCell<UarteState<T>>,
}
// public because it needs to be used in Instance::{get_state, set_state}, but
// should not be used outside the module
#[doc(hidden)]
pub struct UarteState<T> {
inner: T,
rx: RingBuf,
rx_state: RxState,
rx_waker: WakerStore,
tx: RingBuf,
tx_state: TxState,
tx_waker: WakerStore,
_pin: PhantomPinned,
pub struct State {
tx_done: Signal<()>,
rx_done: Signal<u32>,
}
// TODO: Remove when https://github.com/nrf-rs/nrf-hal/pull/276 has landed
#[cfg(any(feature = "52833", feature = "52840"))]
fn port_bit(port: GpioPort) -> bool {
match port {
@ -163,15 +49,35 @@ fn port_bit(port: GpioPort) -> bool {
}
}
impl<T: Instance> Uarte<T> {
pub fn new(uarte: T, mut pins: Pins, parity: Parity, baudrate: Baudrate) -> Self {
// Select pins
impl<T> Uarte<T>
where
T: Instance,
{
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
/// # Unsafe
///
/// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms)
/// on stack allocated buffers which which have been passed to [`send()`](Uarte::send)
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
uarte: T,
irq: T::Interrupt,
mut pins: Pins,
parity: Parity,
baudrate: Baudrate,
) -> Self {
assert!(uarte.enable.read().enable().is_disabled());
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
#[cfg(any(feature = "52833", feature = "52840"))]
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
@ -203,359 +109,310 @@ impl<T: Instance> Uarte<T> {
}
});
// Enable UARTE instance
uarte.enable.write(|w| w.enable().enabled());
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
uarte.config.write(|w| w.parity().variant(parity));
// Enable interrupts
uarte.intenset.write(|w| w.endrx().set().endtx().set());
// Configure
let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
uarte.events_endtx.reset();
uarte.events_endrx.reset();
uarte
.config
.write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
.intenset
.write(|w| w.endtx().set().txstopped().set().endrx().set().rxto().set());
// Configure frequency
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
// Register ISR
irq.set_handler(Self::on_irq);
irq.unpend();
irq.enable();
Uarte {
started: false,
state: UnsafeCell::new(UarteState {
inner: uarte,
rx: RingBuf::new(),
rx_state: RxState::Idle,
rx_waker: WakerStore::new(),
tx: RingBuf::new(),
tx_state: TxState::Idle,
tx_waker: WakerStore::new(),
_pin: PhantomPinned,
}),
instance: uarte,
irq,
pins,
}
}
fn with_state<'a, R>(
self: Pin<&'a mut Self>,
f: impl FnOnce(Pin<&'a mut UarteState<T>>) -> R,
) -> R {
let Self { state, started } = unsafe { self.get_unchecked_mut() };
pub fn free(self) -> (T, T::Interrupt, Pins) {
(self.instance, self.irq, self.pins)
}
interrupt::free(|cs| {
let ptr = state.get();
fn enable(&mut self) {
trace!("enable");
self.instance.enable.write(|w| w.enable().enabled());
}
if !*started {
T::set_state(cs, ptr);
/// Sends serial data.
///
/// `tx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
pub fn send<'a, B>(&'a mut self, tx_buffer: B) -> SendFuture<'a, T, B>
where
B: ReadBuffer<Word = u8>,
{
// Panic if TX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.tx_started());
*started = true;
self.enable();
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
unsafe { Pin::new_unchecked(&mut *ptr) }.start();
}
SendFuture {
uarte: self,
buf: tx_buffer,
}
}
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
f(unsafe { Pin::new_unchecked(&mut *ptr) })
})
fn tx_started(&self) -> bool {
self.instance.events_txstarted.read().bits() != 0
}
/// Receives serial data.
///
/// The future is pending until the buffer is completely filled.
/// A common pattern is to use [`stop()`](ReceiveFuture::stop) to cancel
/// unfinished transfers after a timeout to prevent lockup when no more data
/// is incoming.
///
/// `rx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
pub fn receive<'a, B>(&'a mut self, rx_buffer: B) -> ReceiveFuture<'a, T, B>
where
B: WriteBuffer<Word = u8>,
{
// Panic if RX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.rx_started());
self.enable();
ReceiveFuture {
uarte: self,
buf: Some(rx_buffer),
}
}
fn rx_started(&self) -> bool {
self.instance.events_rxstarted.read().bits() != 0
}
unsafe fn on_irq() {
let uarte = &*pac::UARTE0::ptr();
let mut try_disable = false;
if uarte.events_endtx.read().bits() != 0 {
uarte.events_endtx.reset();
trace!("endtx");
compiler_fence(Ordering::SeqCst);
T::state().tx_done.signal(());
}
if uarte.events_txstopped.read().bits() != 0 {
uarte.events_txstopped.reset();
trace!("txstopped");
try_disable = true;
}
if uarte.events_endrx.read().bits() != 0 {
uarte.events_endrx.reset();
trace!("endrx");
let len = uarte.rxd.amount.read().bits();
compiler_fence(Ordering::SeqCst);
T::state().rx_done.signal(len);
}
if uarte.events_rxto.read().bits() != 0 {
uarte.events_rxto.reset();
trace!("rxto");
try_disable = true;
}
// Disable the peripheral if not active.
if try_disable
&& uarte.events_txstarted.read().bits() == 0
&& uarte.events_rxstarted.read().bits() == 0
{
trace!("disable");
uarte.enable.write(|w| w.enable().disabled());
}
}
}
impl<T: Instance> Drop for Uarte<T> {
fn drop(&mut self) {
// stop DMA before dropping, because DMA is using the buffer in `self`.
todo!()
/// Future for the [`Uarte::send()`] method.
pub struct SendFuture<'a, T, B>
where
T: Instance,
{
uarte: &'a Uarte<T>,
buf: B,
}
impl<'a, T, B> Drop for SendFuture<'a, T, B>
where
T: Instance,
{
fn drop(self: &mut Self) {
if self.uarte.tx_started() {
trace!("stoptx");
// Stop the transmitter to minimize the current consumption.
self.uarte.instance.events_txstarted.reset();
self.uarte
.instance
.tasks_stoptx
.write(|w| unsafe { w.bits(1) });
T::state().tx_done.blocking_wait();
}
}
}
impl<T: Instance> AsyncBufRead for Uarte<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
self.with_state(|s| s.poll_fill_buf(cx))
}
impl<'a, T, B> Future for SendFuture<'a, T, B>
where
T: Instance,
B: ReadBuffer<Word = u8>,
{
type Output = ();
fn consume(self: Pin<&mut Self>, amt: usize) {
self.with_state(|s| s.consume(amt))
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
let Self { uarte, buf } = unsafe { self.get_unchecked_mut() };
if !uarte.tx_started() {
let uarte = &uarte.instance;
T::state().tx_done.reset();
let (ptr, len) = unsafe { buf.read_buffer() };
assert!(len <= EASY_DMA_SIZE);
// TODO: panic if buffer is not in SRAM
compiler_fence(Ordering::SeqCst);
uarte.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("starttx");
uarte.tasks_starttx.write(|w| unsafe { w.bits(1) });
}
T::state().tx_done.poll_wait(cx)
}
}
impl<T: Instance> AsyncWrite for Uarte<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
self.with_state(|s| s.poll_write(cx, buf))
/// Future for the [`Uarte::receive()`] method.
pub struct ReceiveFuture<'a, T, B>
where
T: Instance,
{
uarte: &'a Uarte<T>,
buf: Option<B>,
}
impl<'a, T, B> Drop for ReceiveFuture<'a, T, B>
where
T: Instance,
{
fn drop(self: &mut Self) {
if self.uarte.rx_started() {
trace!("stoprx");
self.uarte.instance.events_rxstarted.reset();
self.uarte
.instance
.tasks_stoprx
.write(|w| unsafe { w.bits(1) });
T::state().rx_done.blocking_wait();
}
}
}
impl<T: Instance> UarteState<T> {
pub fn start(self: Pin<&mut Self>) {
interrupt::set_priority(T::interrupt(), interrupt::Priority::Level7);
interrupt::enable(T::interrupt());
interrupt::pend(T::interrupt());
}
impl<'a, T, B> Future for ReceiveFuture<'a, T, B>
where
T: Instance,
B: WriteBuffer<Word = u8>,
{
type Output = B;
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let this = unsafe { self.get_unchecked_mut() };
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<B> {
let Self { uarte, buf } = unsafe { self.get_unchecked_mut() };
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
if !uarte.rx_started() {
let uarte = &uarte.instance;
// We have data ready in buffer? Return it.
let buf = this.rx.pop_buf();
if buf.len() != 0 {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
return Poll::Ready(Ok(buf));
T::state().rx_done.reset();
let (ptr, len) = unsafe { buf.as_mut().unwrap().write_buffer() };
assert!(len <= EASY_DMA_SIZE);
compiler_fence(Ordering::SeqCst);
uarte.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("startrx");
uarte.tasks_startrx.write(|w| unsafe { w.bits(1) });
}
trace!(" empty");
if this.rx_state == RxState::ReceivingReady {
trace!(" stopping");
this.rx_state = RxState::Stopping;
this.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
}
this.rx_waker.store(cx.waker());
Poll::Pending
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = unsafe { self.get_unchecked_mut() };
trace!("consume {:?}", amt);
this.rx.pop(amt);
interrupt::pend(T::interrupt());
}
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let this = unsafe { self.get_unchecked_mut() };
trace!("poll_write: {:?}", buf.len());
let tx_buf = this.tx.push_buf();
if tx_buf.len() == 0 {
trace!("poll_write: pending");
this.tx_waker.store(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
this.tx.push(n);
trace!("poll_write: queued {:?}", n);
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
interrupt::pend(T::interrupt());
Poll::Ready(Ok(n))
}
fn on_interrupt(&mut self) {
trace!("irq: start");
let mut more_work = true;
while more_work {
more_work = false;
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy?????");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
panic!("unexpected endrx");
}
let buf = self.rx.push_buf();
if buf.len() != 0 {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
self.inner.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Enable RXRDY interrupt.
self.inner.events_rxdrdy.reset();
self.inner.intenset.write(|w| w.rxdrdy().set());
// Start UARTE Receive transaction
self.inner.tasks_startrx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
// Disable the RXRDY event interrupt
// RXRDY is triggered for every byte, but we only care about whether we have
// some bytes or not. So as soon as we have at least one, disable it, to avoid
// wasting CPU cycles in interrupts.
self.inner.intenclr.write(|w| w.rxdrdy().clear());
self.inner.events_rxdrdy.reset();
self.rx_waker.wake();
self.rx_state = RxState::ReceivingReady;
more_work = true; // in case we also have endrx pending
}
}
RxState::ReceivingReady | RxState::Stopping => {
trace!(" irq_rx: in state ReceivingReady");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
self.inner.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
more_work = true; // start another rx if possible
}
}
}
}
more_work = true;
while more_work {
more_work = false;
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if buf.len() != 0 {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
self.inner.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
self.inner.tasks_starttx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if self.inner.events_endtx.read().bits() != 0 {
self.inner.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
more_work = true; // start another tx if possible
}
}
}
}
trace!("irq: end");
T::state()
.rx_done
.poll_wait(cx)
.map(|_| buf.take().unwrap())
}
}
pub struct Pins {
pub rxd: GpioPin<Input<Floating>>,
pub txd: GpioPin<Output<PushPull>>,
pub cts: Option<GpioPin<Input<Floating>>>,
pub rts: Option<GpioPin<Output<PushPull>>>,
/// Future for the [`receive()`] method.
impl<'a, T, B> ReceiveFuture<'a, T, B>
where
T: Instance,
{
/// Stops the ongoing reception and returns the number of bytes received.
pub async fn stop(mut self) -> (B, usize) {
let buf = self.buf.take().unwrap();
drop(self);
let len = T::state().rx_done.wait().await;
(buf, len as _)
}
}
mod private {
pub trait Sealed {}
impl Sealed for crate::pac::UARTE0 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Sealed for crate::pac::UARTE1 {}
}
pub trait Instance: Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed {
fn interrupt() -> Interrupt;
pub trait Instance: Deref<Target = pac::uarte0::RegisterBlock> + Sized + private::Sealed {
type Interrupt: OwnedInterrupt;
#[doc(hidden)]
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self>;
#[doc(hidden)]
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>);
fn state() -> &'static State;
}
#[interrupt]
unsafe fn UARTE0_UART0() {
interrupt::free(|cs| UARTE0::get_state(cs).as_mut().unwrap().on_interrupt());
}
static UARTE0_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
impl private::Sealed for pac::UARTE0 {}
impl Instance for pac::UARTE0 {
type Interrupt = interrupt::UARTE0_UART0Interrupt;
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
#[interrupt]
unsafe fn UARTE1() {
interrupt::free(|cs| UARTE1::get_state(cs).as_mut().unwrap().on_interrupt());
}
static mut UARTE0_STATE: *mut UarteState<UARTE0> = ptr::null_mut();
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
static mut UARTE1_STATE: *mut UarteState<UARTE1> = ptr::null_mut();
impl Instance for UARTE0 {
fn interrupt() -> Interrupt {
Interrupt::UARTE0_UART0
}
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE0_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE0_STATE = state } // Safe because of CriticalSection
fn state() -> &'static State {
&UARTE0_STATE
}
}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Instance for UARTE1 {
fn interrupt() -> Interrupt {
Interrupt::UARTE1
}
static UARTE1_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl private::Sealed for pac::UARTE1 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Instance for pac::UARTE1 {
type Interrupt = interrupt::UARTE1Interrupt;
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE1_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE1_STATE = state } // Safe because of CriticalSection
fn state() -> &'static State {
&UARTE1_STATE
}
}

View File

@ -105,8 +105,8 @@ impl<F: Future + 'static> Task<F> {
if task
.header
.state
.compare_and_swap(0, state, Ordering::AcqRel)
== 0
.compare_exchange(0, state, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
{
// Initialize the task
task.header.poll_fn.write(Self::poll);
@ -214,9 +214,12 @@ impl Executor {
/// Runs the executor until the queue is empty.
pub fn run(&self) {
unsafe {
self.timer_queue.dequeue_expired(Instant::now(), |p| {
self.enqueue(p);
});
if self.alarm.is_some() {
self.timer_queue.dequeue_expired(Instant::now(), |p| {
let header = &*p;
header.enqueue();
});
}
self.run_queue.dequeue_all(|p| {
let header = &*p;

View File

@ -7,16 +7,21 @@ use crate::time::{Duration, Instant};
pub struct Timer {
expires_at: Instant,
yielded_once: bool,
}
impl Timer {
pub fn at(expires_at: Instant) -> Self {
Self { expires_at }
Self {
expires_at,
yielded_once: false,
}
}
pub fn after(duration: Duration) -> Self {
Self {
expires_at: Instant::now() + duration,
yielded_once: false,
}
}
}
@ -25,11 +30,12 @@ impl Unpin for Timer {}
impl Future for Timer {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.expires_at <= Instant::now() {
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.yielded_once && self.expires_at <= Instant::now() {
Poll::Ready(())
} else {
unsafe { super::register_timer(self.expires_at, cx.waker()) };
self.yielded_once = true;
Poll::Pending
}
}

76
embassy/src/interrupt.rs Normal file
View File

@ -0,0 +1,76 @@
use core::mem;
use core::ptr;
use core::sync::atomic::{AtomicBool, AtomicPtr, Ordering};
use cortex_m::peripheral::NVIC;
pub use embassy_macros::interrupt_declare as declare;
pub use embassy_macros::interrupt_take as take;
struct NrWrap(u8);
unsafe impl cortex_m::interrupt::Nr for NrWrap {
fn nr(&self) -> u8 {
self.0
}
}
pub unsafe trait OwnedInterrupt {
type Priority: From<u8> + Into<u8> + Copy;
fn number(&self) -> u8;
#[doc(hidden)]
unsafe fn __handler(&self) -> &'static AtomicPtr<u32>;
fn set_handler(&self, handler: unsafe fn()) {
unsafe { self.__handler() }.store(handler as *mut u32, Ordering::Release);
}
#[inline]
fn enable(&self) {
unsafe {
NVIC::unmask(NrWrap(self.number()));
}
}
#[inline]
fn disable(&self) {
NVIC::mask(NrWrap(self.number()));
}
#[inline]
fn is_active(&self) -> bool {
NVIC::is_active(NrWrap(self.number()))
}
#[inline]
fn is_enabled(&self) -> bool {
NVIC::is_enabled(NrWrap(self.number()))
}
#[inline]
fn is_pending(&self) -> bool {
NVIC::is_pending(NrWrap(self.number()))
}
#[inline]
fn pend(&self) {
NVIC::pend(NrWrap(self.number()))
}
#[inline]
fn unpend(&self) {
NVIC::unpend(NrWrap(self.number()))
}
#[inline]
fn get_priority(&self) -> Self::Priority {
Self::Priority::from(NVIC::get_priority(NrWrap(self.number())))
}
#[inline]
fn set_priority(&self, prio: Self::Priority) {
unsafe {
cortex_m::peripheral::Peripherals::steal()
.NVIC
.set_priority(NrWrap(self.number()), prio.into())
}
}
}

View File

@ -9,6 +9,7 @@ pub(crate) mod fmt;
pub mod executor;
pub mod flash;
pub mod interrupt;
pub mod io;
pub mod rand;
pub mod time;

View File

@ -19,7 +19,11 @@ impl<T> Forever<T> {
}
pub fn put(&'static self, val: T) -> &'static mut T {
if self.used.compare_and_swap(false, true, Ordering::SeqCst) {
if self
.used
.compare_exchange(false, true, Ordering::AcqRel, Ordering::Acquire)
.is_err()
{
panic!("Forever.put() called multiple times");
}

View File

@ -62,4 +62,13 @@ impl<T: Send> Signal<T> {
pub fn wait(&self) -> impl Future<Output = T> + '_ {
futures::future::poll_fn(move |cx| self.poll_wait(cx))
}
/// Blocks until the signal has been received.
///
/// Returns immediately when [`poll_wait()`] has not been called before.
pub fn blocking_wait(&self) {
while cortex_m::interrupt::free(|_| {
matches!(unsafe { &*self.state.get() }, State::Waiting(_))
}) {}
}
}

View File

@ -0,0 +1,84 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use defmt::panic;
use futures::pin_mut;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::io::{AsyncBufRead, AsyncBufReadExt, AsyncWrite, AsyncWriteExt};
use embassy::util::Forever;
use embassy_nrf::buffered_uarte;
use embassy_nrf::interrupt;
#[task]
async fn run() {
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
let port0 = gpio::p0::Parts::new(p.P0);
let pins = buffered_uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
let irq = interrupt::take!(UARTE0_UART0);
let u = buffered_uarte::BufferedUarte::new(
p.UARTE0,
irq,
pins,
buffered_uarte::Parity::EXCLUDED,
buffered_uarte::Baudrate::BAUD115200,
);
pin_mut!(u);
info!("uarte initialized!");
unwrap!(u.write_all(b"Hello!\r\n").await);
info!("wrote hello in uart!");
// Simple demo, reading 8-char chunks and echoing them back reversed.
loop {
info!("reading...");
let mut buf = [0u8; 8];
unwrap!(u.read_exact(&mut buf).await);
info!("read done, got {:[u8]}", buf);
// Reverse buf
for i in 0..4 {
let tmp = buf[i];
buf[i] = buf[7 - i];
buf[7 - i] = tmp;
}
info!("writing...");
unwrap!(u.write_all(&buf).await);
info!("write done");
}
}
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev));
unwrap!(executor.spawn(run()));
loop {
executor.run();
cortex_m::asm::wfe();
}
}

View File

@ -0,0 +1,74 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use core::task::Poll;
use cortex_m_rt::entry;
use defmt::panic;
use embassy::executor::{task, Executor};
use embassy::time::{Duration, Instant, Timer};
use embassy::util::Forever;
use embassy_nrf::pac;
use embassy_nrf::{interrupt, rtc};
use nrf52840_hal::clocks;
#[task]
async fn run1() {
loop {
info!("DING DONG");
Timer::after(Duration::from_ticks(16000)).await;
}
}
#[task]
async fn run2() {
loop {
Timer::at(Instant::from_ticks(0)).await;
}
}
#[task]
async fn run3() {
futures::future::poll_fn(|cx| {
cx.waker().wake_by_ref();
Poll::<()>::Pending
})
.await;
}
static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new();
static ALARM: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
clocks::Clocks::new(p.CLOCK)
.enable_ext_hfosc()
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev));
unwrap!(executor.spawn(run1()));
unwrap!(executor.spawn(run2()));
unwrap!(executor.spawn(run3()));
loop {
executor.run();
cortex_m::asm::wfe();
}
}

View File

@ -7,18 +7,20 @@ mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use defmt::panic;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::util::Forever;
use embassy_nrf::gpiote;
use embassy_nrf::interrupt;
#[task]
async fn run() {
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
let port0 = gpio::p0::Parts::new(p.P0);
let g = gpiote::Gpiote::new(p.GPIOTE);
let g = gpiote::Gpiote::new(p.GPIOTE, interrupt::take!(GPIOTE));
info!("Starting!");

View File

@ -8,11 +8,13 @@ use example_common::*;
use core::mem;
use cortex_m_rt::entry;
use defmt::panic;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::util::Forever;
use embassy_nrf::gpiote::{Gpiote, PortInputPolarity};
use embassy_nrf::interrupt;
async fn button(g: &Gpiote, n: usize, pin: gpio::Pin<gpio::Input<gpio::PullUp>>) {
loop {
@ -28,7 +30,7 @@ async fn run() {
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
let port0 = gpio::p0::Parts::new(p.P0);
let g = Gpiote::new(p.GPIOTE);
let g = Gpiote::new(p.GPIOTE, interrupt::take!(GPIOTE));
info!(
"sizeof Signal<()> = {:usize}",
mem::size_of::<embassy::util::Signal<()>>()

View File

@ -61,7 +61,9 @@
mod example_common;
use example_common::*;
use cortex_m::peripheral::NVIC;
use cortex_m_rt::entry;
use defmt::panic;
use nrf52840_hal::clocks;
use embassy::executor::{task, Executor};
@ -130,7 +132,7 @@ fn main() -> ! {
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1));
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
@ -138,17 +140,20 @@ fn main() -> ! {
let executor_low = EXECUTOR_LOW.put(Executor::new_with_alarm(alarm_low, cortex_m::asm::sev));
let alarm_med = ALARM_MED.put(rtc.alarm1());
let executor_med = EXECUTOR_MED.put(Executor::new_with_alarm(alarm_med, || {
interrupt::pend(interrupt::SWI0_EGU0)
NVIC::pend(interrupt::SWI0_EGU0)
}));
let alarm_high = ALARM_HIGH.put(rtc.alarm2());
let executor_high = EXECUTOR_HIGH.put(Executor::new_with_alarm(alarm_high, || {
interrupt::pend(interrupt::SWI1_EGU1)
NVIC::pend(interrupt::SWI1_EGU1)
}));
interrupt::set_priority(interrupt::SWI0_EGU0, interrupt::Priority::Level7);
interrupt::set_priority(interrupt::SWI1_EGU1, interrupt::Priority::Level6);
interrupt::enable(interrupt::SWI0_EGU0);
interrupt::enable(interrupt::SWI1_EGU1);
unsafe {
let mut nvic: NVIC = core::mem::transmute(());
nvic.set_priority(interrupt::SWI0_EGU0, 7 << 5);
nvic.set_priority(interrupt::SWI1_EGU1, 6 << 5);
NVIC::unmask(interrupt::SWI0_EGU0);
NVIC::unmask(interrupt::SWI1_EGU1);
}
unwrap!(executor_low.spawn(run_low()));
unwrap!(executor_med.spawn(run_med()));

View File

@ -13,7 +13,7 @@ use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::flash::Flash;
use embassy::util::Forever;
use embassy_nrf::qspi;
use embassy_nrf::{interrupt, qspi};
const PAGE_SIZE: usize = 4096;
@ -68,7 +68,8 @@ async fn run() {
deep_power_down: None,
};
let mut q = qspi::Qspi::new(p.QSPI, config);
let irq = interrupt::take!(QSPI);
let mut q = qspi::Qspi::new(p.QSPI, irq, config);
let mut id = [1; 3];
q.custom_instruction(0x9F, &[], &mut id).await.unwrap();

View File

@ -8,13 +8,13 @@ use example_common::*;
use core::mem::MaybeUninit;
use cortex_m_rt::entry;
use nrf52840_hal::clocks;
use defmt::panic;
use embassy::executor::{task, Executor};
use embassy::time::{Clock, Duration, Timer};
use embassy::util::Forever;
use embassy_nrf::pac;
use embassy_nrf::rtc;
use embassy_nrf::{interrupt, rtc};
use nrf52840_hal::clocks;
#[task]
async fn run1() {
@ -47,7 +47,7 @@ fn main() -> ! {
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1));
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };

View File

@ -8,8 +8,9 @@ use example_common::*;
use core::mem::MaybeUninit;
use cortex_m_rt::entry;
use defmt::panic;
use embassy::time::{Alarm, Clock};
use embassy_nrf::rtc;
use embassy_nrf::{interrupt, rtc};
use nrf52840_hal::clocks;
static mut RTC: MaybeUninit<rtc::RTC<embassy_nrf::pac::RTC1>> = MaybeUninit::uninit();
@ -25,9 +26,11 @@ fn main() -> ! {
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let irq = interrupt::take!(RTC1);
let rtc: &'static _ = unsafe {
let ptr = RTC.as_mut_ptr();
ptr.write(rtc::RTC::new(p.RTC1));
ptr.write(rtc::RTC::new(p.RTC1, irq));
&*ptr
};

View File

@ -7,18 +7,74 @@ mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use futures::pin_mut;
use defmt::panic;
use embassy::executor::{task, Executor};
use embassy::time::{Duration, Timer};
use embassy::util::Forever;
use embassy_nrf::{interrupt, pac, rtc, uarte};
use futures::future::{select, Either};
use nrf52840_hal::clocks;
use nrf52840_hal::gpio;
use embassy::executor::{task, Executor};
use embassy::io::{AsyncBufRead, AsyncBufReadExt, AsyncWrite, AsyncWriteExt};
use embassy::util::Forever;
use embassy_nrf::uarte;
#[task]
async fn run() {
async fn run(mut uart: uarte::Uarte<pac::UARTE0>) {
info!("uarte initialized!");
// Message must be in SRAM
let mut buf = [0; 8];
buf.copy_from_slice(b"Hello!\r\n");
uart.send(&buf).await;
info!("wrote hello in uart!");
info!("reading...");
loop {
let received = match select(
uart.receive(&mut buf),
Timer::after(Duration::from_millis(10)),
)
.await
{
Either::Left((buf, _)) => buf,
Either::Right((_, read)) => {
let (buf, n) = read.stop().await;
&buf[..n]
}
};
if received.len() > 0 {
info!("read done, got {:[u8]}", received);
// Echo back received data
uart.send(received).await;
}
}
}
static RTC: Forever<rtc::RTC<pac::RTC1>> = Forever::new();
static ALARM: Forever<rtc::Alarm<pac::RTC1>> = Forever::new();
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let p = unwrap!(embassy_nrf::pac::Peripherals::take());
clocks::Clocks::new(p.CLOCK)
.enable_ext_hfosc()
.set_lfclk_src_external(clocks::LfOscConfiguration::NoExternalNoBypass)
.start_lfclk();
let rtc = RTC.put(rtc::RTC::new(p.RTC1, interrupt::take!(RTC1)));
rtc.start();
unsafe { embassy::time::set_clock(rtc) };
let alarm = ALARM.put(rtc.alarm0());
let executor = EXECUTOR.put(Executor::new_with_alarm(alarm, cortex_m::asm::sev));
// Init UART
let port0 = gpio::p0::Parts::new(p.P0);
let pins = uarte::Pins {
@ -31,47 +87,18 @@ async fn run() {
rts: None,
};
let u = uarte::Uarte::new(
p.UARTE0,
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
);
pin_mut!(u);
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let uart = unsafe {
uarte::Uarte::new(
p.UARTE0,
interrupt::take!(UARTE0_UART0),
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
info!("uarte initialized!");
unwrap!(u.write_all(b"Hello!\r\n").await);
info!("wrote hello in uart!");
// Simple demo, reading 8-char chunks and echoing them back reversed.
loop {
info!("reading...");
let mut buf = [0u8; 8];
unwrap!(u.read_exact(&mut buf).await);
info!("read done, got {:[u8]}", buf);
// Reverse buf
for i in 0..4 {
let tmp = buf[i];
buf[i] = buf[7 - i];
buf[7 - i] = tmp;
}
info!("writing...");
unwrap!(u.write_all(&buf).await);
info!("write done");
}
}
static EXECUTOR: Forever<Executor> = Forever::new();
#[entry]
fn main() -> ! {
info!("Hello World!");
let executor = EXECUTOR.put(Executor::new(cortex_m::asm::sev));
unwrap!(executor.spawn(run()));
unwrap!(executor.spawn(run(uart)));
loop {
executor.run();