nrf/uarte: update to new api

This commit is contained in:
Dario Nieuwenhuis 2021-03-22 01:15:44 +01:00
parent 7b6086d19e
commit df42c38492
5 changed files with 267 additions and 264 deletions

View File

@ -12,38 +12,26 @@ use cortex_m_rt::entry;
use defmt::panic;
use embassy::executor::{task, Executor};
use embassy::time::{Duration, Timer};
use embassy::traits::uart::Uart;
use embassy::traits::uart::{Read, Write};
use embassy::util::Forever;
use embassy_nrf::{interrupt, pac, rtc, uarte};
use embassy_nrf::{interrupt, pac, rtc, uarte, Peripherals};
use futures::future::{select, Either};
use futures::pin_mut;
use nrf52840_hal::clocks;
use nrf52840_hal::gpio;
#[task]
async fn run(uart: pac::UARTE0, port: pac::P0) {
// Init UART
let port0 = gpio::p0::Parts::new(port);
async fn run() {
let p = Peripherals::take().unwrap();
let pins = uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
let mut config = uarte::Config::default();
config.parity = uarte::Parity::EXCLUDED;
config.baudrate = uarte::Baudrate::BAUD115200;
// NOTE(unsafe): Safe becasue we do not use `mem::forget` anywhere.
let mut uart = unsafe {
uarte::Uarte::new(
uart,
interrupt::take!(UARTE0_UART0),
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
)
};
let irq = interrupt::take!(UARTE0_UART0);
let uart =
unsafe { uarte::Uarte::new(p.uarte0, irq, p.p0_08, p.p0_06, p.p0_07, p.p0_05, config) };
pin_mut!(uart);
info!("uarte initialized!");
@ -51,19 +39,22 @@ async fn run(uart: pac::UARTE0, port: pac::P0) {
let mut buf = [0; 8];
buf.copy_from_slice(b"Hello!\r\n");
unwrap!(uart.send(&buf).await);
unwrap!(uart.as_mut().write(&buf).await);
info!("wrote hello in uart!");
loop {
let buf_len = buf.len();
info!("reading...");
unwrap!(uart.as_mut().read(&mut buf).await);
info!("writing...");
unwrap!(uart.as_mut().write(&buf).await);
/*
// `receive()` doesn't return until the buffer has been completely filled with
// incoming data, which in this case is 8 bytes.
//
// This example shows how to use `select` to run an uart receive concurrently with a
// 1 second timer, effectively adding a timeout to the receive operation.
let recv_fut = uart.receive(&mut buf);
let recv_fut = uart.read(&mut buf);
let timer_fut = Timer::after(Duration::from_millis(1000));
let received_len = match select(recv_fut, timer_fut).await {
// recv_fut completed first, so we've received `buf_len` bytes.
@ -81,8 +72,9 @@ async fn run(uart: pac::UARTE0, port: pac::P0) {
info!("read done, got {}", received);
// Echo back received data
unwrap!(uart.send(received).await);
unwrap!(uart.write(received).await);
}
*/
}
}
@ -110,9 +102,7 @@ fn main() -> ! {
let executor = EXECUTOR.put(Executor::new());
executor.set_alarm(alarm);
let uarte0 = p.UARTE0;
let p0 = p.P0;
executor.run(|spawner| {
unwrap!(spawner.spawn(run(uarte0, p0)));
unwrap!(spawner.spawn(run()));
});
}

View File

@ -5,43 +5,49 @@
//! are dropped correctly (e.g. not using `mem::forget()`).
use core::future::Future;
use core::ops::Deref;
use core::marker::PhantomData;
use core::pin::Pin;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embassy::interrupt::InterruptExt;
use embassy::util::Signal;
use core::task::Poll;
use embassy::traits::uart::{Error, Read, Write};
use embassy::util::{wake_on_interrupt, OnDrop, PeripheralBorrow, Signal};
use embassy_extras::unborrow;
use futures::future::poll_fn;
use crate::fmt::{assert, *};
use crate::gpio::Pin as GpioPin;
use crate::hal::pac;
use crate::hal::prelude::*;
use crate::hal::target_constants::EASY_DMA_SIZE;
use crate::interrupt;
use crate::interrupt::Interrupt;
use crate::peripherals;
pub use crate::hal::uarte::Pins;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
#[non_exhaustive]
pub struct Config {
pub parity: Parity,
pub baudrate: Baudrate,
}
impl Default for Config {
fn default() -> Self {
Self {
parity: Parity::EXCLUDED,
baudrate: Baudrate::BAUD115200,
}
}
}
/// Interface to the UARTE peripheral
pub struct Uarte<T>
where
T: Instance,
{
instance: T,
pub struct Uarte<'d, T: Instance> {
peri: T,
irq: T::Interrupt,
pins: Pins,
phantom: PhantomData<&'d mut T>,
}
pub struct State {
tx_done: Signal<()>,
rx_done: Signal<u32>,
}
impl<T> Uarte<T>
where
T: Instance,
{
impl<'d, T: Instance> Uarte<'d, T> {
/// Creates the interface to a UARTE instance.
/// Sets the baud rate, parity and assigns the pins to the UARTE peripheral.
///
@ -52,85 +58,48 @@ where
/// or [`receive`](Uarte::receive).
#[allow(unused_unsafe)]
pub unsafe fn new(
uarte: T,
irq: T::Interrupt,
mut pins: Pins,
parity: Parity,
baudrate: Baudrate,
uarte: impl PeripheralBorrow<Target = T> + 'd,
irq: impl PeripheralBorrow<Target = T::Interrupt> + 'd,
rxd: impl PeripheralBorrow<Target = impl GpioPin> + 'd,
txd: impl PeripheralBorrow<Target = impl GpioPin> + 'd,
cts: impl PeripheralBorrow<Target = impl GpioPin> + 'd,
rts: impl PeripheralBorrow<Target = impl GpioPin> + 'd,
config: Config,
) -> Self {
assert!(uarte.enable.read().enable().is_disabled());
unborrow!(uarte, irq, rxd, txd, cts, rts);
uarte.psel.rxd.write(|w| {
unsafe { w.bits(pins.rxd.psel_bits()) };
w.connect().connected()
});
let r = uarte.regs();
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
unsafe { w.bits(pins.txd.psel_bits()) };
w.connect().connected()
});
assert!(r.enable.read().enable().is_disabled());
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
unsafe { w.bits(pin.psel_bits()) };
w.connect().connected()
} else {
w.connect().disconnected()
}
});
// TODO OptionalPin for RTS/CTS.
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
unsafe { w.bits(pin.psel_bits()) };
w.connect().connected()
} else {
w.connect().disconnected()
}
});
txd.set_high();
rts.set_high();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
txd.conf().write(|w| w.dir().output().drive().h0h1());
//cts.conf().write(|w| w.input().connect().drive().h0h1());
//rts.conf().write(|w| w.dir().output().drive().h0h1());
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
uarte.config.write(|w| w.parity().variant(parity));
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) });
//r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) });
//r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) });
// Enable interrupts
uarte.events_endtx.reset();
uarte.events_endrx.reset();
uarte
.intenset
.write(|w| w.endtx().set().txstopped().set().endrx().set().rxto().set());
r.baudrate.write(|w| w.baudrate().variant(config.baudrate));
r.config.write(|w| w.parity().variant(config.parity));
// Register ISR
irq.set_handler(Self::on_irq);
irq.unpend();
irq.enable();
// Enable
r.enable.write(|w| w.enable().enabled());
Uarte {
instance: uarte,
Self {
peri: uarte,
irq,
pins,
phantom: PhantomData,
}
}
pub fn free(self) -> (T, T::Interrupt, Pins) {
// Wait for the peripheral to be disabled from the ISR.
while self.instance.enable.read().enable().is_enabled() {}
(self.instance, self.irq, self.pins)
}
fn enable(&mut self) {
trace!("enable");
self.instance.enable.write(|w| w.enable().enabled());
}
fn tx_started(&self) -> bool {
self.instance.events_txstarted.read().bits() != 0
}
fn rx_started(&self) -> bool {
self.instance.events_rxstarted.read().bits() != 0
}
/*
unsafe fn on_irq(_ctx: *mut ()) {
let uarte = &*pac::UARTE0::ptr();
@ -186,54 +155,127 @@ where
uarte.enable.write(|w| w.enable().disabled());
}
}
*/
}
impl<T: Instance> embassy::traits::uart::Uart for Uarte<T> {
type ReceiveFuture<'a> = ReceiveFuture<'a, T>;
type SendFuture<'a> = SendFuture<'a, T>;
impl<'d, T: Instance> Read for Uarte<'d, T> {
#[rustfmt::skip]
type ReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), Error>> + 'a;
/// Sends serial data.
///
/// `tx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
fn send<'a>(&'a mut self, tx_buffer: &'a [u8]) -> SendFuture<'a, T> {
// Panic if TX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.tx_started());
fn read<'a>(self: Pin<&'a mut Self>, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let this = unsafe { self.get_unchecked_mut() };
T::state().tx_done.reset();
let ptr = rx_buffer.as_ptr();
let len = rx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
SendFuture {
uarte: self,
buf: tx_buffer,
}
let r = this.peri.regs();
let drop = OnDrop::new(move || {
info!("read drop: stopping");
r.intenclr.write(|w| w.endrx().clear());
r.tasks_stoprx.write(|w| unsafe { w.bits(1) });
// TX is stopped almost instantly, spinning is fine.
while r.events_endrx.read().bits() == 0 {}
info!("read drop: stopped");
});
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endrx.reset();
r.intenset.write(|w| w.endrx().set());
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
let irq = &mut this.irq;
poll_fn(|cx| {
if r.events_endrx.read().bits() != 0 {
r.events_endrx.reset();
return Poll::Ready(());
}
/// Receives serial data.
///
/// The future is pending until the buffer is completely filled.
/// A common pattern is to use [`stop()`](ReceiveFuture::stop) to cancel
/// unfinished transfers after a timeout to prevent lockup when no more data
/// is incoming.
///
/// `rx_buffer` is marked as static as per `embedded-dma` requirements.
/// It it safe to use a buffer with a non static lifetime if memory is not
/// reused until the future has finished.
fn receive<'a>(&'a mut self, rx_buffer: &'a mut [u8]) -> ReceiveFuture<'a, T> {
// Panic if RX is running which can happen if the user has called
// `mem::forget()` on a previous future after polling it once.
assert!(!self.rx_started());
wake_on_interrupt(irq, cx.waker());
T::state().rx_done.reset();
Poll::Pending
})
.await;
ReceiveFuture {
uarte: self,
buf: rx_buffer,
compiler_fence(Ordering::SeqCst);
r.intenclr.write(|w| w.endrx().clear());
drop.defuse();
Ok(())
}
}
}
impl<'d, T: Instance> Write for Uarte<'d, T> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output = Result<(), Error>> + 'a;
fn write<'a>(self: Pin<&'a mut Self>, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
let this = unsafe { self.get_unchecked_mut() };
let ptr = tx_buffer.as_ptr();
let len = tx_buffer.len();
assert!(len <= EASY_DMA_SIZE);
// TODO: panic if buffer is not in SRAM
let r = this.peri.regs();
let drop = OnDrop::new(move || {
info!("write drop: stopping");
r.intenclr.write(|w| w.endtx().clear());
r.tasks_stoptx.write(|w| unsafe { w.bits(1) });
// TX is stopped almost instantly, spinning is fine.
while r.events_endtx.read().bits() == 0 {}
info!("write drop: stopped");
});
r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.events_endtx.reset();
r.intenset.write(|w| w.endtx().set());
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx.write(|w| unsafe { w.bits(1) });
let irq = &mut this.irq;
poll_fn(|cx| {
if r.events_endtx.read().bits() != 0 {
r.events_endtx.reset();
return Poll::Ready(());
}
wake_on_interrupt(irq, cx.waker());
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.intenclr.write(|w| w.endtx().clear());
drop.defuse();
Ok(())
}
}
}
/*
/// Future for the [`Uarte::send()`] method.
pub struct SendFuture<'a, T>
where
@ -252,11 +294,8 @@ where
trace!("stoptx");
// Stop the transmitter to minimize the current consumption.
self.uarte.instance.events_txstarted.reset();
self.uarte
.instance
.tasks_stoptx
.write(|w| unsafe { w.bits(1) });
self.uarte.peri.events_txstarted.reset();
self.uarte.peri.tasks_stoptx.write(|w| unsafe { w.bits(1) });
// TX is stopped almost instantly, spinning is fine.
while !T::state().tx_done.signaled() {}
@ -264,46 +303,6 @@ where
}
}
impl<'a, T> Future for SendFuture<'a, T>
where
T: Instance,
{
type Output = Result<(), embassy::traits::uart::Error>;
fn poll(self: core::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Self { uarte, buf } = unsafe { self.get_unchecked_mut() };
if T::state().tx_done.poll_wait(cx).is_pending() {
let ptr = buf.as_ptr();
let len = buf.len();
assert!(len <= EASY_DMA_SIZE);
// TODO: panic if buffer is not in SRAM
uarte.enable();
compiler_fence(Ordering::SeqCst);
uarte
.instance
.txd
.ptr
.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.instance
.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("starttx");
uarte.instance.tasks_starttx.write(|w| unsafe { w.bits(1) });
while !uarte.tx_started() {} // Make sure transmission has started
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
/// Future for the [`Uarte::receive()`] method.
pub struct ReceiveFuture<'a, T>
where
@ -321,11 +320,8 @@ where
if self.uarte.rx_started() {
trace!("stoprx (drop)");
self.uarte.instance.events_rxstarted.reset();
self.uarte
.instance
.tasks_stoprx
.write(|w| unsafe { w.bits(1) });
self.uarte.peri.events_rxstarted.reset();
self.uarte.peri.tasks_stoprx.write(|w| unsafe { w.bits(1) });
embassy_extras::low_power_wait_until(|| T::state().rx_done.signaled())
}
@ -350,19 +346,11 @@ where
uarte.enable();
compiler_fence(Ordering::SeqCst);
uarte
.instance
.rxd
.ptr
.write(|w| unsafe { w.ptr().bits(ptr as u32) });
uarte
.instance
.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(len as _) });
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) });
trace!("startrx");
uarte.instance.tasks_startrx.write(|w| unsafe { w.bits(1) });
uarte.peri.tasks_startrx.write(|w| unsafe { w.bits(1) });
while !uarte.rx_started() {} // Make sure reception has started
Poll::Pending
@ -383,11 +371,8 @@ where
let len = if self.uarte.rx_started() {
trace!("stoprx (stop)");
self.uarte.instance.events_rxstarted.reset();
self.uarte
.instance
.tasks_stoprx
.write(|w| unsafe { w.bits(1) });
self.uarte.peri.events_rxstarted.reset();
self.uarte.peri.tasks_stoprx.write(|w| unsafe { w.bits(1) });
T::state().rx_done.wait().await
} else {
// Transfer was stopped before it even started. No bytes were sent.
@ -396,45 +381,33 @@ where
len as _
}
}
*/
mod private {
pub trait Sealed {}
mod sealed {
use super::*;
pub trait Instance {
fn regs(&self) -> &pac::uarte0::RegisterBlock;
}
}
pub trait Instance:
Deref<Target = pac::uarte0::RegisterBlock> + Sized + private::Sealed + 'static
{
pub trait Instance: sealed::Instance + 'static {
type Interrupt: Interrupt;
#[doc(hidden)]
fn state() -> &'static State;
}
static UARTE0_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
impl private::Sealed for pac::UARTE0 {}
impl Instance for pac::UARTE0 {
type Interrupt = interrupt::UARTE0_UART0;
fn state() -> &'static State {
&UARTE0_STATE
macro_rules! make_impl {
($type:ident, $irq:ident) => {
impl sealed::Instance for peripherals::$type {
fn regs(&self) -> &pac::uarte0::RegisterBlock {
unsafe { &*pac::$type::ptr() }
}
}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
static UARTE1_STATE: State = State {
tx_done: Signal::new(),
rx_done: Signal::new(),
};
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl private::Sealed for pac::UARTE1 {}
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
impl Instance for pac::UARTE1 {
type Interrupt = interrupt::UARTE1;
fn state() -> &'static State {
&UARTE1_STATE
}
impl Instance for peripherals::$type {
type Interrupt = interrupt::$irq;
}
};
}
make_impl!(UARTE0, UARTE0_UART0);
#[cfg(any(feature = "52833", feature = "52840", feature = "9160"))]
make_impl!(UARTE1, UARTE1);

View File

@ -1,4 +1,5 @@
use core::future::Future;
use core::pin::Pin;
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -7,18 +8,31 @@ pub enum Error {
Other,
}
pub trait Uart {
type ReceiveFuture<'a>: Future<Output = Result<(), Error>>;
type SendFuture<'a>: Future<Output = Result<(), Error>>;
/// Receive into the buffer until the buffer is full
fn receive<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReceiveFuture<'a>;
/// Send the specified buffer, and return when the transmission has completed
fn send<'a>(&'a mut self, buf: &'a [u8]) -> Self::SendFuture<'a>;
pub trait Read {
type ReadFuture<'a>: Future<Output = Result<(), Error>>
where
Self: 'a;
fn read<'a>(self: Pin<&'a mut Self>, buf: &'a mut [u8]) -> Self::ReadFuture<'a>;
}
pub trait IdleUart {
type ReceiveFuture<'a>: Future<Output = Result<usize, Error>>;
pub trait ReadUntilIdle {
type ReadUntilIdleFuture<'a>: Future<Output = Result<usize, Error>>
where
Self: 'a;
/// Receive into the buffer until the buffer is full or the line is idle after some bytes are received
/// Return the number of bytes received
fn receive_until_idle<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReceiveFuture<'a>;
fn read_until_idle<'a>(
self: Pin<&'a mut Self>,
buf: &'a mut [u8],
) -> Self::ReadUntilIdleFuture<'a>;
}
pub trait Write {
type WriteFuture<'a>: Future<Output = Result<(), Error>>
where
Self: 'a;
fn write<'a>(self: Pin<&'a mut Self>, buf: &'a [u8]) -> Self::WriteFuture<'a>;
}

View File

@ -2,6 +2,7 @@
mod drop_bomb;
mod forever;
mod mutex;
mod on_drop;
mod portal;
mod signal;
@ -11,6 +12,7 @@ mod waker;
pub use drop_bomb::*;
pub use forever::*;
pub use mutex::*;
pub use on_drop::*;
pub use portal::*;
pub use signal::*;
pub use waker::*;

View File

@ -0,0 +1,24 @@
use core::mem;
use core::mem::MaybeUninit;
pub struct OnDrop<F: FnOnce()> {
f: MaybeUninit<F>,
}
impl<F: FnOnce()> OnDrop<F> {
pub fn new(f: F) -> Self {
Self {
f: MaybeUninit::new(f),
}
}
pub fn defuse(self) {
mem::forget(self)
}
}
impl<F: FnOnce()> Drop for OnDrop<F> {
fn drop(&mut self) {
unsafe { self.f.as_ptr().read()() }
}
}