option to not restart if not in time

This commit is contained in:
Dietrich Beck 2023-07-04 12:00:26 +02:00
parent 367b319401
commit e74585da24
4 changed files with 202 additions and 164 deletions

View File

@ -105,7 +105,7 @@ where
{
pin.pad_ctrl().modify(|w| {
w.set_ie(true);
let (pu, pd) = (false, true); // TODO there is another pull request related to this change, also check datasheet chapter 4.9
let (pu, pd) = (false, true); // datasheet chapter 4.9
w.set_pue(pu);
w.set_pde(pd);
});
@ -468,6 +468,11 @@ pub struct ContinuousAdc<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaCha
corrupted: bool,
}
pub enum NextOrStop<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaChannel, In: Input> {
Next(ContinuousAdc<'a, 'b, 'c, 'd, 'r, W, C1, C2, In>),
Stop(Adc<'d>),
}
impl<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaChannel, In: Input>
ContinuousAdc<'a, 'b, 'c, 'd, 'r, W, C1, C2, In>
{
@ -477,7 +482,7 @@ impl<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaChannel, In: Input>
ch2: PeripheralRef<'a, C2>,
mut input: In,
speed: SamplingSpeed,
control_input: &'c mut [[u32; 4]; 2],
control_input: &'c mut [u32; 4],
buffer: &'b mut [W],
) -> ContinuousAdc<'a, 'b, 'c, 'd, 'r, W, C1, C2, In> {
assert!(W::size() as u8 <= 1); // u16 or u8 (will right-shift) allowed TODO static_assert possible?
@ -553,20 +558,49 @@ impl<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaChannel, In: Input>
)
}
pub async fn next_or_stop<'new_buf>(
self,
buffer: &'new_buf mut [W],
) -> NextOrStop<'a, 'new_buf, 'c, 'd, 'r, W, C1, C2, In> {
let ContinuousAdc {
adc,
transfer,
input,
corrupted,
} = self;
if let Some(transfer) = transfer.next_or_stop(buffer).await {
NextOrStop::Next(ContinuousAdc {
adc,
transfer,
input,
corrupted,
})
} else {
Self::stop_private(true).await;
NextOrStop::Stop(adc)
}
}
pub async fn stop(self) -> Adc<'d> {
self.transfer.stop().await;
Self::stop_private(self.corrupted).await;
// you only get your adc back if you stop the ContinuousAdc like intended
// (i.e. don't drop it while it is still running)
self.adc
}
async fn stop_private(hard_reset: bool) {
// stop adc
let r = Adc::regs();
r.cs().modify(|w| {
w.set_start_many(false);
});
if self.input.measure_temperature() {
r.cs().modify(|w| w.set_ts_en(false));
}
Adc::fifo_drain().await;
if self.corrupted {
if hard_reset {
// TODO this is a fix to a problem where round robin order is shifted and the first few samples of any following start_many measurements seem to have random order
// TODO I was not able to find the real cause, but it would only appear with a certain chance if the next buffer was not provided in time
// completely reset adc
@ -579,10 +613,6 @@ impl<'a, 'b, 'c, 'd, 'r, W: Word, C1: DmaChannel, C2: DmaChannel, In: Input>
// Wait for ADC ready
while !r.cs().read().ready() {}
}
// you only get your adc back if you stop the ContinuousAdc like intended
// (i.e. don't drop it while it is still running)
self.adc
}
}

View File

@ -194,7 +194,7 @@ impl<'a, C: Channel> Future for Transfer<'a, C> {
pub enum Read<'a, W: Word> {
Constant(&'a W),
Increase(&'a [W]),
// TODO ring also possible, but more complicated due to generic size and alignment requirements
// ring also possible, but more complicated due to generic size and alignment requirements
}
impl<'a, W: Word> Read<'a, W> {
@ -219,73 +219,42 @@ impl<'a, W: Word> Read<'a, W> {
}
}
struct InnerChannels<'a, C1: Channel, C2: Channel> {
struct InnerContinuous<'a, 'c, 'r, W: Word, C1: Channel, C2: Channel> {
data: PeripheralRef<'a, C1>,
control: PeripheralRef<'a, C2>,
}
impl<'a, C1: Channel, C2: Channel> Drop for InnerChannels<'a, C1, C2> {
fn drop(&mut self) {
pac::DMA
.chan_abort()
.modify(|m| m.set_chan_abort((1 << self.data.number()) | (1 << self.control.number())));
// wait until both channels are ready again, this should go quite fast so no async used here
while self.data.regs().ctrl_trig().read().busy() || self.control.regs().ctrl_trig().read().busy() {}
}
}
pub struct ContinuousTransfer<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> {
channels: InnerChannels<'a, C1, C2>,
#[allow(dead_code)] // reference is kept to signal that dma channels are writing to it
buffer: &'b mut [W],
control_input: &'c mut [[u32; 4]; 2],
control_input: &'c mut [u32; 4],
dreq: TreqSel,
read: Read<'r, W>,
}
impl<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> ContinuousTransfer<'a, 'b, 'c, 'r, W, C1, C2> {
pub fn start_new(
ch1: PeripheralRef<'a, C1>,
ch2: PeripheralRef<'a, C2>,
control_input: &'c mut [[u32; 4]; 2],
buffer: &'b mut [W],
dreq: TreqSel,
mut read: Read<'r, W>,
) -> ContinuousTransfer<'a, 'b, 'c, 'r, W, C1, C2> {
let channels = InnerChannels {
data: ch1,
control: ch2,
};
impl<'a, 'c, 'r, W: Word, C1: Channel, C2: Channel> InnerContinuous<'a, 'c, 'r, W, C1, C2> {
// SAFETY: the compiler does not know buffer is still modified after the function returns
unsafe fn start(&mut self, buffer: &mut [W]) {
let pc = self.control.regs();
let pd = self.data.regs();
let control_ptr = self.control_input.as_ptr() as u32;
// configure what control channel writes
// using registers: READ_ADDR, WRITE_ADDR, TRANS_COUNT, CTRL_TRIG
let mut w = CtrlTrig(0);
w.set_treq_sel(dreq);
w.set_treq_sel(self.dreq);
w.set_data_size(W::size());
w.set_incr_read(read.is_increase());
w.set_incr_read(self.read.is_increase());
w.set_incr_write(true);
w.set_chain_to(channels.data.number()); // chain disabled by default
w.set_chain_to(self.data.number()); // chain disabled by default
w.set_en(true);
w.set_irq_quiet(false);
// writing to registers: READ_ADDR, WRITE_ADDR, TRANS_COUNT, CTRL_TRIG
*self.control_input = [self.read.address(), buffer.as_ptr() as u32, buffer.len() as u32, w.0];
*control_input = [
[read.address(), buffer.as_ptr() as u32, buffer.len() as u32, w.0], // first control write
[0; 4], // Null trigger to stop
];
// Configure data channel
// will be set by control channel
let pd = channels.data.regs();
// configure data channel to some values, correct ones will be set by control channel
pd.read_addr().write_value(0);
pd.write_addr().write_value(0);
pd.trans_count().write_value(0);
pd.al1_ctrl().write_value(0);
// Configure control channel
let pc = channels.control.regs();
// configure control channel
pc.write_addr().write_value(pd.read_addr().as_ptr() as u32);
pc.read_addr().write_value(control_input.as_ptr() as u32);
pc.read_addr().write_value(control_ptr);
pc.trans_count().write_value(4); // each control input is 4 u32s long
// trigger control channel
@ -297,27 +266,154 @@ impl<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> ContinuousTransfer<'a, '
w.set_incr_write(true); // yes, but ring is required
w.set_ring_sel(true); // wrap write addresses
w.set_ring_size(4); // 1 << 4 = 16 = 4 * sizeof(u32) bytes
w.set_chain_to(channels.control.number()); // disable chain, data channel is triggered by write
w.set_chain_to(self.control.number()); // disable chain, data channel is triggered by write
w.set_irq_quiet(false);
w.set_en(true);
});
compiler_fence(Ordering::SeqCst);
// wait until control ran
self.after_start(buffer.len());
}
// SAFETY: the compiler does not know buffer is still modified after the function returns
async unsafe fn next(&mut self, buffer: &mut [W], auto_restart: bool) -> bool {
let pc = self.control.regs();
let pd = self.data.regs();
let control_ptr = self.control_input.as_ptr() as u32;
// configure control input to use new buffer
let mut w = CtrlTrig(0);
w.set_treq_sel(self.dreq);
w.set_data_size(W::size());
w.set_incr_read(self.read.is_increase());
w.set_incr_write(true);
w.set_chain_to(self.data.number()); // chain disabled by default
w.set_en(true);
w.set_irq_quiet(false);
*self.control_input = [self.read.address(), buffer.as_ptr() as u32, buffer.len() as u32, w.0];
// enable chain of running data channel, now we can't change control safely anymore
// using al1_ctrl to not trigger the channel in case it stopped
compiler_fence(Ordering::SeqCst);
pd.al1_ctrl().write_value({
let mut ctrl = pd.ctrl_trig().read();
ctrl.set_chain_to(self.control.number());
ctrl.0
});
compiler_fence(Ordering::SeqCst);
// order is really important in this if statement, otherwise it can happen that the chain still activated
if pd.ctrl_trig().read().busy() || pc.read_addr().read() > control_ptr {
poll_fn(|cx: &mut Context<'_>| {
CHANNEL_WAKERS[self.data.number() as usize].register(cx.waker());
if pc.read_addr().read() > control_ptr {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
self.after_start(buffer.len());
true
} else {
if auto_restart {
// trigger control to restart loop
pc.ctrl_trig().write_value(pc.ctrl_trig().read());
compiler_fence(Ordering::SeqCst);
self.after_start(buffer.len());
}
false
}
}
fn after_start(&mut self, buffer_len: usize) {
let control_ptr = self.control_input.as_ptr() as u32;
let pc = self.control.regs();
while pc.ctrl_trig().read().busy() {}
// reset control
control_input[0] = [0; 4];
pc.read_addr().write_value(control_input.as_ptr() as u32);
// don't fail silently, control must not read anything but control_input
assert!(pc.read_addr().read() == control_ptr + 16);
read.forward(buffer.len());
// reset read adress
pc.read_addr().write_value(control_ptr);
ContinuousTransfer {
channels,
buffer,
// reset control input, not strictly necessary, but helpful if something goes wrong
*self.control_input = [0; 4];
self.read.forward(buffer_len);
}
async fn stop(&mut self) {
// when no longer enabling the chain, the data channel simply stops
poll_fn(|cx| {
CHANNEL_WAKERS[self.data.number() as usize].register(cx.waker());
if self.data.regs().ctrl_trig().read().busy() {
Poll::Pending
} else {
Poll::Ready(())
}
})
.await;
}
}
impl<'a, 'c, 'r, W: Word, C1: Channel, C2: Channel> Drop for InnerContinuous<'a, 'c, 'r, W, C1, C2> {
fn drop(&mut self) {
pac::DMA
.chan_abort()
.modify(|m| m.set_chan_abort((1 << self.data.number()) | (1 << self.control.number())));
// wait until both channels are ready again, this should go quite fast so no async used here
while self.data.regs().ctrl_trig().read().busy() || self.control.regs().ctrl_trig().read().busy() {}
}
}
// contract: if the user has a ContinuousTransfer, it is always running
// Using InnerContinuous is unsafe, because the rust compiler has no knowledge of the dma
// channels modifying the buffer. This is why we keep a &mut to the buffer here
pub struct ContinuousTransfer<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> {
inner: InnerContinuous<'a, 'c, 'r, W, C1, C2>,
#[allow(dead_code)]
buffer: &'b mut [W],
}
impl<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> ContinuousTransfer<'a, 'b, 'c, 'r, W, C1, C2> {
pub fn start_new(
ch1: PeripheralRef<'a, C1>,
ch2: PeripheralRef<'a, C2>,
control_input: &'c mut [u32; 4],
buffer: &'b mut [W],
dreq: TreqSel,
read: Read<'r, W>,
) -> ContinuousTransfer<'a, 'b, 'c, 'r, W, C1, C2> {
let mut inner = InnerContinuous {
data: ch1,
control: ch2,
control_input,
dreq,
read,
};
// SAFETY: we keep a &mut to buffer around to signal it is being written to
unsafe { inner.start(buffer) };
ContinuousTransfer { inner, buffer }
}
pub async fn next_or_stop<'new_buf>(
self,
buffer: &'new_buf mut [W],
) -> Option<ContinuousTransfer<'a, 'new_buf, 'c, 'r, W, C1, C2>> {
let ContinuousTransfer {
mut inner,
buffer: _old,
} = self;
// SAFETY: we keep a &mut to buffer around to signal it is being written to
let in_time = unsafe { inner.next(buffer, false).await };
match in_time {
true => Some(ContinuousTransfer { inner, buffer }),
false => None,
}
}
@ -326,104 +422,16 @@ impl<'a, 'b, 'c, 'r, W: Word, C1: Channel, C2: Channel> ContinuousTransfer<'a, '
buffer: &'new_buf mut [W],
) -> (ContinuousTransfer<'a, 'new_buf, 'c, 'r, W, C1, C2>, bool) {
let ContinuousTransfer {
channels,
buffer: _old, // is free now, and the compiler knows it
control_input,
dreq,
mut read,
mut inner,
buffer: _old,
} = self;
let pc = channels.control.regs();
let pd = channels.data.regs();
let mut w = CtrlTrig(0);
w.set_treq_sel(dreq);
w.set_data_size(W::size());
w.set_incr_read(read.is_increase());
w.set_incr_write(true);
w.set_chain_to(channels.data.number()); // chain disabled by default
w.set_en(true);
w.set_irq_quiet(false);
// configure control
control_input[0] = [read.address(), buffer.as_ptr() as u32, buffer.len() as u32, w.0];
// enable chain, now we can't change control safely anymore
compiler_fence(Ordering::SeqCst);
pd.al1_ctrl().write_value({
let mut ctrl = pd.ctrl_trig().read();
ctrl.set_chain_to(channels.control.number());
ctrl.0
});
if pc.read_addr().read() == control_input.as_ptr() as u32 && pd.ctrl_trig().read().busy() {
poll_fn(|cx: &mut Context<'_>| {
CHANNEL_WAKERS[channels.data.number() as usize].register(cx.waker());
if pc.read_addr().read() == control_input.as_ptr() as u32 + 16 {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// reset control
assert!(!pc.ctrl_trig().read().busy());
control_input[0] = [0; 4];
pc.read_addr().write_value(control_input.as_ptr() as u32);
read.forward(buffer.len());
(
ContinuousTransfer {
channels,
buffer,
control_input,
dreq,
read,
},
true,
)
} else {
if pc.read_addr().read() == control_input.as_ptr() as u32 {
// trigger control to restart loop
pc.ctrl_trig().write_value(pc.ctrl_trig().read());
compiler_fence(Ordering::SeqCst);
}
// if control read already moved, data has already been activated
// wait for control to complete
while pc.ctrl_trig().read().busy() {}
// reset control
control_input[0] = [0; 4];
pc.read_addr().write_value(control_input.as_ptr() as u32);
read.forward(buffer.len());
(
ContinuousTransfer {
channels,
control_input,
buffer,
dreq,
read,
},
false,
)
}
// SAFETY: we keep a &mut to buffer around to signal it is being written to
let in_time = unsafe { inner.next(buffer, true).await };
(ContinuousTransfer { inner, buffer }, in_time)
}
pub async fn stop(self) {
// when no longer enabling the chain, data simply stops
poll_fn(|cx| {
CHANNEL_WAKERS[self.channels.data.number() as usize].register(cx.waker());
if self.channels.data.regs().ctrl_trig().read().busy() {
Poll::Pending
} else {
Poll::Ready(())
}
})
.await;
pub async fn stop(mut self) {
self.inner.stop().await;
}
pub fn abort(self) {} // drop channels

View File

@ -98,7 +98,7 @@ async fn main(_spawner: Spawner) {
// this particular input leads to adc measuring temp, p26, p27, p28, temp, p26, p27, p28, ...
let input = adc::input_temperature(true).add(&mut p28).add(&mut p27).add(&mut p26);
let mut control_input = [[0u32; 4]; 2];
let mut control_input = [0u32; 4];
let speed = SamplingSpeed::Fastest;
let mut sums = [0u32; 4]; // p26, p27, p28, temp

View File

@ -24,7 +24,7 @@ async fn main(_spawner: Spawner) {
*x = (2 - i as u32 / 100) * 100 + i as u32 % 100 + 1;
}
let mut control_input = [[0u32; 4]; 2];
let mut control_input = [0u32; 4];
let mut to_buf0 = [0u32; 100];
let mut to_buf1 = [0u32; 100];