usb: move classes into the embassy-usb crate.

This commit is contained in:
Dario Nieuwenhuis
2022-09-26 13:00:21 +02:00
parent f4f5824972
commit f27a47a37b
29 changed files with 45 additions and 795 deletions

View File

@ -0,0 +1,354 @@
use core::cell::Cell;
use core::mem::{self, MaybeUninit};
use core::sync::atomic::{AtomicBool, Ordering};
use embassy_sync::blocking_mutex::CriticalSectionMutex;
use crate::control::{self, ControlHandler, InResponse, OutResponse, Request};
use crate::driver::{Driver, Endpoint, EndpointError, EndpointIn, EndpointOut};
use crate::types::*;
use crate::Builder;
/// This should be used as `device_class` when building the `UsbDevice`.
pub const USB_CLASS_CDC: u8 = 0x02;
const USB_CLASS_CDC_DATA: u8 = 0x0a;
const CDC_SUBCLASS_ACM: u8 = 0x02;
const CDC_PROTOCOL_NONE: u8 = 0x00;
const CS_INTERFACE: u8 = 0x24;
const CDC_TYPE_HEADER: u8 = 0x00;
const CDC_TYPE_CALL_MANAGEMENT: u8 = 0x01;
const CDC_TYPE_ACM: u8 = 0x02;
const CDC_TYPE_UNION: u8 = 0x06;
const REQ_SEND_ENCAPSULATED_COMMAND: u8 = 0x00;
#[allow(unused)]
const REQ_GET_ENCAPSULATED_COMMAND: u8 = 0x01;
const REQ_SET_LINE_CODING: u8 = 0x20;
const REQ_GET_LINE_CODING: u8 = 0x21;
const REQ_SET_CONTROL_LINE_STATE: u8 = 0x22;
pub struct State<'a> {
control: MaybeUninit<Control<'a>>,
shared: ControlShared,
}
impl<'a> State<'a> {
pub fn new() -> Self {
Self {
control: MaybeUninit::uninit(),
shared: Default::default(),
}
}
}
/// Packet level implementation of a CDC-ACM serial port.
///
/// This class can be used directly and it has the least overhead due to directly reading and
/// writing USB packets with no intermediate buffers, but it will not act like a stream-like serial
/// port. The following constraints must be followed if you use this class directly:
///
/// - `read_packet` must be called with a buffer large enough to hold max_packet_size bytes.
/// - `write_packet` must not be called with a buffer larger than max_packet_size bytes.
/// - If you write a packet that is exactly max_packet_size bytes long, it won't be processed by the
/// host operating system until a subsequent shorter packet is sent. A zero-length packet (ZLP)
/// can be sent if there is no other data to send. This is because USB bulk transactions must be
/// terminated with a short packet, even if the bulk endpoint is used for stream-like data.
pub struct CdcAcmClass<'d, D: Driver<'d>> {
_comm_ep: D::EndpointIn,
_data_if: InterfaceNumber,
read_ep: D::EndpointOut,
write_ep: D::EndpointIn,
control: &'d ControlShared,
}
struct Control<'a> {
shared: &'a ControlShared,
}
/// Shared data between Control and CdcAcmClass
struct ControlShared {
line_coding: CriticalSectionMutex<Cell<LineCoding>>,
dtr: AtomicBool,
rts: AtomicBool,
}
impl Default for ControlShared {
fn default() -> Self {
ControlShared {
dtr: AtomicBool::new(false),
rts: AtomicBool::new(false),
line_coding: CriticalSectionMutex::new(Cell::new(LineCoding {
stop_bits: StopBits::One,
data_bits: 8,
parity_type: ParityType::None,
data_rate: 8_000,
})),
}
}
}
impl<'a> Control<'a> {
fn shared(&mut self) -> &'a ControlShared {
self.shared
}
}
impl<'d> ControlHandler for Control<'d> {
fn reset(&mut self) {
let shared = self.shared();
shared.line_coding.lock(|x| x.set(LineCoding::default()));
shared.dtr.store(false, Ordering::Relaxed);
shared.rts.store(false, Ordering::Relaxed);
}
fn control_out(&mut self, req: control::Request, data: &[u8]) -> OutResponse {
match req.request {
REQ_SEND_ENCAPSULATED_COMMAND => {
// We don't actually support encapsulated commands but pretend we do for standards
// compatibility.
OutResponse::Accepted
}
REQ_SET_LINE_CODING if data.len() >= 7 => {
let coding = LineCoding {
data_rate: u32::from_le_bytes(data[0..4].try_into().unwrap()),
stop_bits: data[4].into(),
parity_type: data[5].into(),
data_bits: data[6],
};
self.shared().line_coding.lock(|x| x.set(coding));
debug!("Set line coding to: {:?}", coding);
OutResponse::Accepted
}
REQ_SET_CONTROL_LINE_STATE => {
let dtr = (req.value & 0x0001) != 0;
let rts = (req.value & 0x0002) != 0;
let shared = self.shared();
shared.dtr.store(dtr, Ordering::Relaxed);
shared.rts.store(rts, Ordering::Relaxed);
debug!("Set dtr {}, rts {}", dtr, rts);
OutResponse::Accepted
}
_ => OutResponse::Rejected,
}
}
fn control_in<'a>(&'a mut self, req: Request, buf: &'a mut [u8]) -> InResponse<'a> {
match req.request {
// REQ_GET_ENCAPSULATED_COMMAND is not really supported - it will be rejected below.
REQ_GET_LINE_CODING if req.length == 7 => {
debug!("Sending line coding");
let coding = self.shared().line_coding.lock(|x| x.get());
assert!(buf.len() >= 7);
buf[0..4].copy_from_slice(&coding.data_rate.to_le_bytes());
buf[4] = coding.stop_bits as u8;
buf[5] = coding.parity_type as u8;
buf[6] = coding.data_bits;
InResponse::Accepted(&buf[0..7])
}
_ => InResponse::Rejected,
}
}
}
impl<'d, D: Driver<'d>> CdcAcmClass<'d, D> {
/// Creates a new CdcAcmClass with the provided UsbBus and max_packet_size in bytes. For
/// full-speed devices, max_packet_size has to be one of 8, 16, 32 or 64.
pub fn new(builder: &mut Builder<'d, D>, state: &'d mut State<'d>, max_packet_size: u16) -> Self {
let control = state.control.write(Control { shared: &state.shared });
let control_shared = &state.shared;
assert!(builder.control_buf_len() >= 7);
let mut func = builder.function(USB_CLASS_CDC, CDC_SUBCLASS_ACM, CDC_PROTOCOL_NONE);
// Control interface
let mut iface = func.interface();
iface.handler(control);
let comm_if = iface.interface_number();
let data_if = u8::from(comm_if) + 1;
let mut alt = iface.alt_setting(USB_CLASS_CDC, CDC_SUBCLASS_ACM, CDC_PROTOCOL_NONE);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_HEADER, // bDescriptorSubtype
0x10,
0x01, // bcdCDC (1.10)
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_ACM, // bDescriptorSubtype
0x00, // bmCapabilities
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_UNION, // bDescriptorSubtype
comm_if.into(), // bControlInterface
data_if.into(), // bSubordinateInterface
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_CALL_MANAGEMENT, // bDescriptorSubtype
0x00, // bmCapabilities
data_if.into(), // bDataInterface
],
);
let comm_ep = alt.endpoint_interrupt_in(8, 255);
// Data interface
let mut iface = func.interface();
let data_if = iface.interface_number();
let mut alt = iface.alt_setting(USB_CLASS_CDC_DATA, 0x00, CDC_PROTOCOL_NONE);
let read_ep = alt.endpoint_bulk_out(max_packet_size);
let write_ep = alt.endpoint_bulk_in(max_packet_size);
CdcAcmClass {
_comm_ep: comm_ep,
_data_if: data_if,
read_ep,
write_ep,
control: control_shared,
}
}
/// Gets the maximum packet size in bytes.
pub fn max_packet_size(&self) -> u16 {
// The size is the same for both endpoints.
self.read_ep.info().max_packet_size
}
/// Gets the current line coding. The line coding contains information that's mainly relevant
/// for USB to UART serial port emulators, and can be ignored if not relevant.
pub fn line_coding(&self) -> LineCoding {
self.control.line_coding.lock(|x| x.get())
}
/// Gets the DTR (data terminal ready) state
pub fn dtr(&self) -> bool {
self.control.dtr.load(Ordering::Relaxed)
}
/// Gets the RTS (request to send) state
pub fn rts(&self) -> bool {
self.control.rts.load(Ordering::Relaxed)
}
/// Writes a single packet into the IN endpoint.
pub async fn write_packet(&mut self, data: &[u8]) -> Result<(), EndpointError> {
self.write_ep.write(data).await
}
/// Reads a single packet from the OUT endpoint.
pub async fn read_packet(&mut self, data: &mut [u8]) -> Result<usize, EndpointError> {
self.read_ep.read(data).await
}
/// Waits for the USB host to enable this interface
pub async fn wait_connection(&mut self) {
self.read_ep.wait_enabled().await
}
}
/// Number of stop bits for LineCoding
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum StopBits {
/// 1 stop bit
One = 0,
/// 1.5 stop bits
OnePointFive = 1,
/// 2 stop bits
Two = 2,
}
impl From<u8> for StopBits {
fn from(value: u8) -> Self {
if value <= 2 {
unsafe { mem::transmute(value) }
} else {
StopBits::One
}
}
}
/// Parity for LineCoding
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ParityType {
None = 0,
Odd = 1,
Even = 2,
Mark = 3,
Space = 4,
}
impl From<u8> for ParityType {
fn from(value: u8) -> Self {
if value <= 4 {
unsafe { mem::transmute(value) }
} else {
ParityType::None
}
}
}
/// Line coding parameters
///
/// This is provided by the host for specifying the standard UART parameters such as baud rate. Can
/// be ignored if you don't plan to interface with a physical UART.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct LineCoding {
stop_bits: StopBits,
data_bits: u8,
parity_type: ParityType,
data_rate: u32,
}
impl LineCoding {
/// Gets the number of stop bits for UART communication.
pub fn stop_bits(&self) -> StopBits {
self.stop_bits
}
/// Gets the number of data bits for UART communication.
pub fn data_bits(&self) -> u8 {
self.data_bits
}
/// Gets the parity type for UART communication.
pub fn parity_type(&self) -> ParityType {
self.parity_type
}
/// Gets the data rate in bits per second for UART communication.
pub fn data_rate(&self) -> u32 {
self.data_rate
}
}
impl Default for LineCoding {
fn default() -> Self {
LineCoding {
stop_bits: StopBits::One,
data_bits: 8,
parity_type: ParityType::None,
data_rate: 8_000,
}
}
}

View File

@ -0,0 +1,478 @@
use core::intrinsics::copy_nonoverlapping;
use core::mem::{size_of, MaybeUninit};
use crate::control::{self, ControlHandler, InResponse, OutResponse, Request};
use crate::driver::{Driver, Endpoint, EndpointError, EndpointIn, EndpointOut};
use crate::types::*;
use crate::Builder;
/// This should be used as `device_class` when building the `UsbDevice`.
pub const USB_CLASS_CDC: u8 = 0x02;
const USB_CLASS_CDC_DATA: u8 = 0x0a;
const CDC_SUBCLASS_NCM: u8 = 0x0d;
const CDC_PROTOCOL_NONE: u8 = 0x00;
const CDC_PROTOCOL_NTB: u8 = 0x01;
const CS_INTERFACE: u8 = 0x24;
const CDC_TYPE_HEADER: u8 = 0x00;
const CDC_TYPE_UNION: u8 = 0x06;
const CDC_TYPE_ETHERNET: u8 = 0x0F;
const CDC_TYPE_NCM: u8 = 0x1A;
const REQ_SEND_ENCAPSULATED_COMMAND: u8 = 0x00;
//const REQ_GET_ENCAPSULATED_COMMAND: u8 = 0x01;
//const REQ_SET_ETHERNET_MULTICAST_FILTERS: u8 = 0x40;
//const REQ_SET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER: u8 = 0x41;
//const REQ_GET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER: u8 = 0x42;
//const REQ_SET_ETHERNET_PACKET_FILTER: u8 = 0x43;
//const REQ_GET_ETHERNET_STATISTIC: u8 = 0x44;
const REQ_GET_NTB_PARAMETERS: u8 = 0x80;
//const REQ_GET_NET_ADDRESS: u8 = 0x81;
//const REQ_SET_NET_ADDRESS: u8 = 0x82;
//const REQ_GET_NTB_FORMAT: u8 = 0x83;
//const REQ_SET_NTB_FORMAT: u8 = 0x84;
//const REQ_GET_NTB_INPUT_SIZE: u8 = 0x85;
const REQ_SET_NTB_INPUT_SIZE: u8 = 0x86;
//const REQ_GET_MAX_DATAGRAM_SIZE: u8 = 0x87;
//const REQ_SET_MAX_DATAGRAM_SIZE: u8 = 0x88;
//const REQ_GET_CRC_MODE: u8 = 0x89;
//const REQ_SET_CRC_MODE: u8 = 0x8A;
//const NOTIF_MAX_PACKET_SIZE: u16 = 8;
//const NOTIF_POLL_INTERVAL: u8 = 20;
const NTB_MAX_SIZE: usize = 2048;
const SIG_NTH: u32 = 0x484d434e;
const SIG_NDP_NO_FCS: u32 = 0x304d434e;
const SIG_NDP_WITH_FCS: u32 = 0x314d434e;
const ALTERNATE_SETTING_DISABLED: u8 = 0x00;
const ALTERNATE_SETTING_ENABLED: u8 = 0x01;
/// Simple NTB header (NTH+NDP all in one) for sending packets
#[repr(packed)]
#[allow(unused)]
struct NtbOutHeader {
// NTH
nth_sig: u32,
nth_len: u16,
nth_seq: u16,
nth_total_len: u16,
nth_first_index: u16,
// NDP
ndp_sig: u32,
ndp_len: u16,
ndp_next_index: u16,
ndp_datagram_index: u16,
ndp_datagram_len: u16,
ndp_term1: u16,
ndp_term2: u16,
}
#[repr(packed)]
#[allow(unused)]
struct NtbParameters {
length: u16,
formats_supported: u16,
in_params: NtbParametersDir,
out_params: NtbParametersDir,
}
#[repr(packed)]
#[allow(unused)]
struct NtbParametersDir {
max_size: u32,
divisor: u16,
payload_remainder: u16,
out_alignment: u16,
max_datagram_count: u16,
}
fn byteify<T>(buf: &mut [u8], data: T) -> &[u8] {
let len = size_of::<T>();
unsafe { copy_nonoverlapping(&data as *const _ as *const u8, buf.as_mut_ptr(), len) }
&buf[..len]
}
pub struct State<'a> {
comm_control: MaybeUninit<CommControl<'a>>,
data_control: MaybeUninit<DataControl>,
shared: ControlShared,
}
impl<'a> State<'a> {
pub fn new() -> Self {
Self {
comm_control: MaybeUninit::uninit(),
data_control: MaybeUninit::uninit(),
shared: Default::default(),
}
}
}
/// Shared data between Control and CdcAcmClass
struct ControlShared {
mac_addr: [u8; 6],
}
impl Default for ControlShared {
fn default() -> Self {
ControlShared { mac_addr: [0; 6] }
}
}
struct CommControl<'a> {
mac_addr_string: StringIndex,
shared: &'a ControlShared,
mac_addr_str: [u8; 12],
}
impl<'d> ControlHandler for CommControl<'d> {
fn control_out(&mut self, req: control::Request, _data: &[u8]) -> OutResponse {
match req.request {
REQ_SEND_ENCAPSULATED_COMMAND => {
// We don't actually support encapsulated commands but pretend we do for standards
// compatibility.
OutResponse::Accepted
}
REQ_SET_NTB_INPUT_SIZE => {
// TODO
OutResponse::Accepted
}
_ => OutResponse::Rejected,
}
}
fn control_in<'a>(&'a mut self, req: Request, buf: &'a mut [u8]) -> InResponse<'a> {
match req.request {
REQ_GET_NTB_PARAMETERS => {
let res = NtbParameters {
length: size_of::<NtbParameters>() as _,
formats_supported: 1, // only 16bit,
in_params: NtbParametersDir {
max_size: NTB_MAX_SIZE as _,
divisor: 4,
payload_remainder: 0,
out_alignment: 4,
max_datagram_count: 0, // not used
},
out_params: NtbParametersDir {
max_size: NTB_MAX_SIZE as _,
divisor: 4,
payload_remainder: 0,
out_alignment: 4,
max_datagram_count: 1, // We only decode 1 packet per NTB
},
};
InResponse::Accepted(byteify(buf, res))
}
_ => InResponse::Rejected,
}
}
fn get_string(&mut self, index: StringIndex, _lang_id: u16) -> Option<&str> {
if index == self.mac_addr_string {
let mac_addr = self.shared.mac_addr;
let s = &mut self.mac_addr_str;
for i in 0..12 {
let n = (mac_addr[i / 2] >> ((1 - i % 2) * 4)) & 0xF;
s[i] = match n {
0x0..=0x9 => b'0' + n,
0xA..=0xF => b'A' + n - 0xA,
_ => unreachable!(),
}
}
Some(unsafe { core::str::from_utf8_unchecked(s) })
} else {
warn!("unknown string index requested");
None
}
}
}
struct DataControl {}
impl ControlHandler for DataControl {
fn set_alternate_setting(&mut self, alternate_setting: u8) {
match alternate_setting {
ALTERNATE_SETTING_ENABLED => info!("ncm: interface enabled"),
ALTERNATE_SETTING_DISABLED => info!("ncm: interface disabled"),
_ => unreachable!(),
}
}
}
pub struct CdcNcmClass<'d, D: Driver<'d>> {
_comm_if: InterfaceNumber,
comm_ep: D::EndpointIn,
data_if: InterfaceNumber,
read_ep: D::EndpointOut,
write_ep: D::EndpointIn,
_control: &'d ControlShared,
}
impl<'d, D: Driver<'d>> CdcNcmClass<'d, D> {
pub fn new(
builder: &mut Builder<'d, D>,
state: &'d mut State<'d>,
mac_address: [u8; 6],
max_packet_size: u16,
) -> Self {
state.shared.mac_addr = mac_address;
let mut func = builder.function(USB_CLASS_CDC, CDC_SUBCLASS_NCM, CDC_PROTOCOL_NONE);
// Control interface
let mut iface = func.interface();
let mac_addr_string = iface.string();
iface.handler(state.comm_control.write(CommControl {
mac_addr_string,
shared: &state.shared,
mac_addr_str: [0; 12],
}));
let comm_if = iface.interface_number();
let mut alt = iface.alt_setting(USB_CLASS_CDC, CDC_SUBCLASS_NCM, CDC_PROTOCOL_NONE);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_HEADER, // bDescriptorSubtype
0x10,
0x01, // bcdCDC (1.10)
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_UNION, // bDescriptorSubtype
comm_if.into(), // bControlInterface
u8::from(comm_if) + 1, // bSubordinateInterface
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_ETHERNET, // bDescriptorSubtype
mac_addr_string.into(), // iMACAddress
0, // bmEthernetStatistics
0, // |
0, // |
0, // |
0xea, // wMaxSegmentSize = 1514
0x05, // |
0, // wNumberMCFilters
0, // |
0, // bNumberPowerFilters
],
);
alt.descriptor(
CS_INTERFACE,
&[
CDC_TYPE_NCM, // bDescriptorSubtype
0x00, // bcdNCMVersion
0x01, // |
0, // bmNetworkCapabilities
],
);
let comm_ep = alt.endpoint_interrupt_in(8, 255);
// Data interface
let mut iface = func.interface();
iface.handler(state.data_control.write(DataControl {}));
let data_if = iface.interface_number();
let _alt = iface.alt_setting(USB_CLASS_CDC_DATA, 0x00, CDC_PROTOCOL_NTB);
let mut alt = iface.alt_setting(USB_CLASS_CDC_DATA, 0x00, CDC_PROTOCOL_NTB);
let read_ep = alt.endpoint_bulk_out(max_packet_size);
let write_ep = alt.endpoint_bulk_in(max_packet_size);
CdcNcmClass {
_comm_if: comm_if,
comm_ep,
data_if,
read_ep,
write_ep,
_control: &state.shared,
}
}
pub fn split(self) -> (Sender<'d, D>, Receiver<'d, D>) {
(
Sender {
write_ep: self.write_ep,
seq: 0,
},
Receiver {
data_if: self.data_if,
comm_ep: self.comm_ep,
read_ep: self.read_ep,
},
)
}
}
pub struct Sender<'d, D: Driver<'d>> {
write_ep: D::EndpointIn,
seq: u16,
}
impl<'d, D: Driver<'d>> Sender<'d, D> {
pub async fn write_packet(&mut self, data: &[u8]) -> Result<(), EndpointError> {
let seq = self.seq;
self.seq = self.seq.wrapping_add(1);
const MAX_PACKET_SIZE: usize = 64; // TODO unhardcode
const OUT_HEADER_LEN: usize = 28;
let header = NtbOutHeader {
nth_sig: SIG_NTH,
nth_len: 0x0c,
nth_seq: seq,
nth_total_len: (data.len() + OUT_HEADER_LEN) as u16,
nth_first_index: 0x0c,
ndp_sig: SIG_NDP_NO_FCS,
ndp_len: 0x10,
ndp_next_index: 0x00,
ndp_datagram_index: OUT_HEADER_LEN as u16,
ndp_datagram_len: data.len() as u16,
ndp_term1: 0x00,
ndp_term2: 0x00,
};
// Build first packet on a buffer, send next packets straight from `data`.
let mut buf = [0; MAX_PACKET_SIZE];
let n = byteify(&mut buf, header);
assert_eq!(n.len(), OUT_HEADER_LEN);
if OUT_HEADER_LEN + data.len() < MAX_PACKET_SIZE {
// First packet is not full, just send it.
// No need to send ZLP because it's short for sure.
buf[OUT_HEADER_LEN..][..data.len()].copy_from_slice(data);
self.write_ep.write(&buf[..OUT_HEADER_LEN + data.len()]).await?;
} else {
let (d1, d2) = data.split_at(MAX_PACKET_SIZE - OUT_HEADER_LEN);
buf[OUT_HEADER_LEN..].copy_from_slice(d1);
self.write_ep.write(&buf).await?;
for chunk in d2.chunks(MAX_PACKET_SIZE) {
self.write_ep.write(&chunk).await?;
}
// Send ZLP if needed.
if d2.len() % MAX_PACKET_SIZE == 0 {
self.write_ep.write(&[]).await?;
}
}
Ok(())
}
}
pub struct Receiver<'d, D: Driver<'d>> {
data_if: InterfaceNumber,
comm_ep: D::EndpointIn,
read_ep: D::EndpointOut,
}
impl<'d, D: Driver<'d>> Receiver<'d, D> {
/// Reads a single packet from the OUT endpoint.
pub async fn read_packet(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> {
// Retry loop
loop {
// read NTB
let mut ntb = [0u8; NTB_MAX_SIZE];
let mut pos = 0;
loop {
let n = self.read_ep.read(&mut ntb[pos..]).await?;
pos += n;
if n < self.read_ep.info().max_packet_size as usize || pos == NTB_MAX_SIZE {
break;
}
}
let ntb = &ntb[..pos];
// Process NTB header (NTH)
let nth = match ntb.get(..12) {
Some(x) => x,
None => {
warn!("Received too short NTB");
continue;
}
};
let sig = u32::from_le_bytes(nth[0..4].try_into().unwrap());
if sig != SIG_NTH {
warn!("Received bad NTH sig.");
continue;
}
let ndp_idx = u16::from_le_bytes(nth[10..12].try_into().unwrap()) as usize;
// Process NTB Datagram Pointer (NDP)
let ndp = match ntb.get(ndp_idx..ndp_idx + 12) {
Some(x) => x,
None => {
warn!("NTH has an NDP pointer out of range.");
continue;
}
};
let sig = u32::from_le_bytes(ndp[0..4].try_into().unwrap());
if sig != SIG_NDP_NO_FCS && sig != SIG_NDP_WITH_FCS {
warn!("Received bad NDP sig.");
continue;
}
let datagram_index = u16::from_le_bytes(ndp[8..10].try_into().unwrap()) as usize;
let datagram_len = u16::from_le_bytes(ndp[10..12].try_into().unwrap()) as usize;
if datagram_index == 0 || datagram_len == 0 {
// empty, ignore. This is allowed by the spec, so don't warn.
continue;
}
// Process actual datagram, finally.
let datagram = match ntb.get(datagram_index..datagram_index + datagram_len) {
Some(x) => x,
None => {
warn!("NDP has a datagram pointer out of range.");
continue;
}
};
buf[..datagram_len].copy_from_slice(datagram);
return Ok(datagram_len);
}
}
/// Waits for the USB host to enable this interface
pub async fn wait_connection(&mut self) -> Result<(), EndpointError> {
loop {
self.read_ep.wait_enabled().await;
self.comm_ep.wait_enabled().await;
let buf = [
0xA1, //bmRequestType
0x00, //bNotificationType = NETWORK_CONNECTION
0x01, // wValue = connected
0x00,
self.data_if.into(), // wIndex = interface
0x00,
0x00, // wLength
0x00,
];
match self.comm_ep.write(&buf).await {
Ok(()) => break, // Done!
Err(EndpointError::Disabled) => {} // Got disabled again, wait again.
Err(e) => return Err(e),
}
}
Ok(())
}
}

View File

@ -0,0 +1,504 @@
use core::mem::MaybeUninit;
use core::ops::Range;
use core::sync::atomic::{AtomicUsize, Ordering};
#[cfg(feature = "usbd-hid")]
use ssmarshal::serialize;
#[cfg(feature = "usbd-hid")]
use usbd_hid::descriptor::AsInputReport;
use crate::control::{ControlHandler, InResponse, OutResponse, Request, RequestType};
use crate::driver::{Driver, Endpoint, EndpointError, EndpointIn, EndpointOut};
use crate::Builder;
const USB_CLASS_HID: u8 = 0x03;
const USB_SUBCLASS_NONE: u8 = 0x00;
const USB_PROTOCOL_NONE: u8 = 0x00;
// HID
const HID_DESC_DESCTYPE_HID: u8 = 0x21;
const HID_DESC_DESCTYPE_HID_REPORT: u8 = 0x22;
const HID_DESC_SPEC_1_10: [u8; 2] = [0x10, 0x01];
const HID_DESC_COUNTRY_UNSPEC: u8 = 0x00;
const HID_REQ_SET_IDLE: u8 = 0x0a;
const HID_REQ_GET_IDLE: u8 = 0x02;
const HID_REQ_GET_REPORT: u8 = 0x01;
const HID_REQ_SET_REPORT: u8 = 0x09;
const HID_REQ_GET_PROTOCOL: u8 = 0x03;
const HID_REQ_SET_PROTOCOL: u8 = 0x0b;
pub struct Config<'d> {
/// HID report descriptor.
pub report_descriptor: &'d [u8],
/// Handler for control requests.
pub request_handler: Option<&'d dyn RequestHandler>,
/// Configures how frequently the host should poll for reading/writing HID reports.
///
/// A lower value means better throughput & latency, at the expense
/// of CPU on the device & bandwidth on the bus. A value of 10 is reasonable for
/// high performance uses, and a value of 255 is good for best-effort usecases.
pub poll_ms: u8,
/// Max packet size for both the IN and OUT endpoints.
pub max_packet_size: u16,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ReportId {
In(u8),
Out(u8),
Feature(u8),
}
impl ReportId {
fn try_from(value: u16) -> Result<Self, ()> {
match value >> 8 {
1 => Ok(ReportId::In(value as u8)),
2 => Ok(ReportId::Out(value as u8)),
3 => Ok(ReportId::Feature(value as u8)),
_ => Err(()),
}
}
}
pub struct State<'d> {
control: MaybeUninit<Control<'d>>,
out_report_offset: AtomicUsize,
}
impl<'d> State<'d> {
pub fn new() -> Self {
State {
control: MaybeUninit::uninit(),
out_report_offset: AtomicUsize::new(0),
}
}
}
pub struct HidReaderWriter<'d, D: Driver<'d>, const READ_N: usize, const WRITE_N: usize> {
reader: HidReader<'d, D, READ_N>,
writer: HidWriter<'d, D, WRITE_N>,
}
fn build<'d, D: Driver<'d>>(
builder: &mut Builder<'d, D>,
state: &'d mut State<'d>,
config: Config<'d>,
with_out_endpoint: bool,
) -> (Option<D::EndpointOut>, D::EndpointIn, &'d AtomicUsize) {
let control = state.control.write(Control::new(
config.report_descriptor,
config.request_handler,
&state.out_report_offset,
));
let len = config.report_descriptor.len();
let mut func = builder.function(USB_CLASS_HID, USB_SUBCLASS_NONE, USB_PROTOCOL_NONE);
let mut iface = func.interface();
iface.handler(control);
let mut alt = iface.alt_setting(USB_CLASS_HID, USB_SUBCLASS_NONE, USB_PROTOCOL_NONE);
// HID descriptor
alt.descriptor(
HID_DESC_DESCTYPE_HID,
&[
// HID Class spec version
HID_DESC_SPEC_1_10[0],
HID_DESC_SPEC_1_10[1],
// Country code not supported
HID_DESC_COUNTRY_UNSPEC,
// Number of following descriptors
1,
// We have a HID report descriptor the host should read
HID_DESC_DESCTYPE_HID_REPORT,
// HID report descriptor size,
(len & 0xFF) as u8,
(len >> 8 & 0xFF) as u8,
],
);
let ep_in = alt.endpoint_interrupt_in(config.max_packet_size, config.poll_ms);
let ep_out = if with_out_endpoint {
Some(alt.endpoint_interrupt_out(config.max_packet_size, config.poll_ms))
} else {
None
};
(ep_out, ep_in, &state.out_report_offset)
}
impl<'d, D: Driver<'d>, const READ_N: usize, const WRITE_N: usize> HidReaderWriter<'d, D, READ_N, WRITE_N> {
/// Creates a new HidReaderWriter.
///
/// This will allocate one IN and one OUT endpoints. If you only need writing (sending)
/// HID reports, consider using [`HidWriter::new`] instead, which allocates an IN endpoint only.
///
pub fn new(builder: &mut Builder<'d, D>, state: &'d mut State<'d>, config: Config<'d>) -> Self {
let (ep_out, ep_in, offset) = build(builder, state, config, true);
Self {
reader: HidReader {
ep_out: ep_out.unwrap(),
offset,
},
writer: HidWriter { ep_in },
}
}
/// Splits into seperate readers/writers for input and output reports.
pub fn split(self) -> (HidReader<'d, D, READ_N>, HidWriter<'d, D, WRITE_N>) {
(self.reader, self.writer)
}
/// Waits for both IN and OUT endpoints to be enabled.
pub async fn ready(&mut self) -> () {
self.reader.ready().await;
self.writer.ready().await;
}
/// Writes an input report by serializing the given report structure.
#[cfg(feature = "usbd-hid")]
pub async fn write_serialize<IR: AsInputReport>(&mut self, r: &IR) -> Result<(), EndpointError> {
self.writer.write_serialize(r).await
}
/// Writes `report` to its interrupt endpoint.
pub async fn write(&mut self, report: &[u8]) -> Result<(), EndpointError> {
self.writer.write(report).await
}
/// Reads an output report from the Interrupt Out pipe.
///
/// See [`HidReader::read`].
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, ReadError> {
self.reader.read(buf).await
}
}
pub struct HidWriter<'d, D: Driver<'d>, const N: usize> {
ep_in: D::EndpointIn,
}
pub struct HidReader<'d, D: Driver<'d>, const N: usize> {
ep_out: D::EndpointOut,
offset: &'d AtomicUsize,
}
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ReadError {
BufferOverflow,
Disabled,
Sync(Range<usize>),
}
impl From<EndpointError> for ReadError {
fn from(val: EndpointError) -> Self {
use EndpointError::*;
match val {
BufferOverflow => ReadError::BufferOverflow,
Disabled => ReadError::Disabled,
}
}
}
impl<'d, D: Driver<'d>, const N: usize> HidWriter<'d, D, N> {
/// Creates a new HidWriter.
///
/// This will allocate one IN endpoint only, so the host won't be able to send
/// reports to us. If you need that, consider using [`HidReaderWriter::new`] instead.
///
/// poll_ms configures how frequently the host should poll for reading/writing
/// HID reports. A lower value means better throughput & latency, at the expense
/// of CPU on the device & bandwidth on the bus. A value of 10 is reasonable for
/// high performance uses, and a value of 255 is good for best-effort usecases.
pub fn new(builder: &mut Builder<'d, D>, state: &'d mut State<'d>, config: Config<'d>) -> Self {
let (ep_out, ep_in, _offset) = build(builder, state, config, false);
assert!(ep_out.is_none());
Self { ep_in }
}
/// Waits for the interrupt in endpoint to be enabled.
pub async fn ready(&mut self) -> () {
self.ep_in.wait_enabled().await
}
/// Writes an input report by serializing the given report structure.
#[cfg(feature = "usbd-hid")]
pub async fn write_serialize<IR: AsInputReport>(&mut self, r: &IR) -> Result<(), EndpointError> {
let mut buf: [u8; N] = [0; N];
let size = match serialize(&mut buf, r) {
Ok(size) => size,
Err(_) => return Err(EndpointError::BufferOverflow),
};
self.write(&buf[0..size]).await
}
/// Writes `report` to its interrupt endpoint.
pub async fn write(&mut self, report: &[u8]) -> Result<(), EndpointError> {
assert!(report.len() <= N);
let max_packet_size = usize::from(self.ep_in.info().max_packet_size);
let zlp_needed = report.len() < N && (report.len() % max_packet_size == 0);
for chunk in report.chunks(max_packet_size) {
self.ep_in.write(chunk).await?;
}
if zlp_needed {
self.ep_in.write(&[]).await?;
}
Ok(())
}
}
impl<'d, D: Driver<'d>, const N: usize> HidReader<'d, D, N> {
/// Waits for the interrupt out endpoint to be enabled.
pub async fn ready(&mut self) -> () {
self.ep_out.wait_enabled().await
}
/// Delivers output reports from the Interrupt Out pipe to `handler`.
///
/// If `use_report_ids` is true, the first byte of the report will be used as
/// the `ReportId` value. Otherwise the `ReportId` value will be 0.
pub async fn run<T: RequestHandler>(mut self, use_report_ids: bool, handler: &T) -> ! {
let offset = self.offset.load(Ordering::Acquire);
assert!(offset == 0);
let mut buf = [0; N];
loop {
match self.read(&mut buf).await {
Ok(len) => {
let id = if use_report_ids { buf[0] } else { 0 };
handler.set_report(ReportId::Out(id), &buf[..len]);
}
Err(ReadError::BufferOverflow) => warn!(
"Host sent output report larger than the configured maximum output report length ({})",
N
),
Err(ReadError::Disabled) => self.ep_out.wait_enabled().await,
Err(ReadError::Sync(_)) => unreachable!(),
}
}
}
/// Reads an output report from the Interrupt Out pipe.
///
/// **Note:** Any reports sent from the host over the control pipe will be
/// passed to [`RequestHandler::set_report()`] for handling. The application
/// is responsible for ensuring output reports from both pipes are handled
/// correctly.
///
/// **Note:** If `N` > the maximum packet size of the endpoint (i.e. output
/// reports may be split across multiple packets) and this method's future
/// is dropped after some packets have been read, the next call to `read()`
/// will return a [`ReadError::SyncError()`]. The range in the sync error
/// indicates the portion `buf` that was filled by the current call to
/// `read()`. If the dropped future used the same `buf`, then `buf` will
/// contain the full report.
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, ReadError> {
assert!(N != 0);
assert!(buf.len() >= N);
// Read packets from the endpoint
let max_packet_size = usize::from(self.ep_out.info().max_packet_size);
let starting_offset = self.offset.load(Ordering::Acquire);
let mut total = starting_offset;
loop {
for chunk in buf[starting_offset..N].chunks_mut(max_packet_size) {
match self.ep_out.read(chunk).await {
Ok(size) => {
total += size;
if size < max_packet_size || total == N {
self.offset.store(0, Ordering::Release);
break;
} else {
self.offset.store(total, Ordering::Release);
}
}
Err(err) => {
self.offset.store(0, Ordering::Release);
return Err(err.into());
}
}
}
// Some hosts may send ZLPs even when not required by the HID spec, so we'll loop as long as total == 0.
if total > 0 {
break;
}
}
if starting_offset > 0 {
Err(ReadError::Sync(starting_offset..total))
} else {
Ok(total)
}
}
}
pub trait RequestHandler {
/// Reads the value of report `id` into `buf` returning the size.
///
/// Returns `None` if `id` is invalid or no data is available.
fn get_report(&self, id: ReportId, buf: &mut [u8]) -> Option<usize> {
let _ = (id, buf);
None
}
/// Sets the value of report `id` to `data`.
fn set_report(&self, id: ReportId, data: &[u8]) -> OutResponse {
let _ = (id, data);
OutResponse::Rejected
}
/// Get the idle rate for `id`.
///
/// If `id` is `None`, get the idle rate for all reports. Returning `None`
/// will reject the control request. Any duration at or above 1.024 seconds
/// or below 4ms will be returned as an indefinite idle rate.
fn get_idle_ms(&self, id: Option<ReportId>) -> Option<u32> {
let _ = id;
None
}
/// Set the idle rate for `id` to `dur`.
///
/// If `id` is `None`, set the idle rate of all input reports to `dur`. If
/// an indefinite duration is requested, `dur` will be set to `u32::MAX`.
fn set_idle_ms(&self, id: Option<ReportId>, duration_ms: u32) {
let _ = (id, duration_ms);
}
}
struct Control<'d> {
report_descriptor: &'d [u8],
request_handler: Option<&'d dyn RequestHandler>,
out_report_offset: &'d AtomicUsize,
hid_descriptor: [u8; 9],
}
impl<'d> Control<'d> {
fn new(
report_descriptor: &'d [u8],
request_handler: Option<&'d dyn RequestHandler>,
out_report_offset: &'d AtomicUsize,
) -> Self {
Control {
report_descriptor,
request_handler,
out_report_offset,
hid_descriptor: [
// Length of buf inclusive of size prefix
9,
// Descriptor type
HID_DESC_DESCTYPE_HID,
// HID Class spec version
HID_DESC_SPEC_1_10[0],
HID_DESC_SPEC_1_10[1],
// Country code not supported
HID_DESC_COUNTRY_UNSPEC,
// Number of following descriptors
1,
// We have a HID report descriptor the host should read
HID_DESC_DESCTYPE_HID_REPORT,
// HID report descriptor size,
(report_descriptor.len() & 0xFF) as u8,
(report_descriptor.len() >> 8 & 0xFF) as u8,
],
}
}
}
impl<'d> ControlHandler for Control<'d> {
fn reset(&mut self) {
self.out_report_offset.store(0, Ordering::Release);
}
fn get_descriptor<'a>(&'a mut self, req: Request, _buf: &'a mut [u8]) -> InResponse<'a> {
match (req.value >> 8) as u8 {
HID_DESC_DESCTYPE_HID_REPORT => InResponse::Accepted(self.report_descriptor),
HID_DESC_DESCTYPE_HID => InResponse::Accepted(&self.hid_descriptor),
_ => InResponse::Rejected,
}
}
fn control_out(&mut self, req: Request, data: &[u8]) -> OutResponse {
trace!("HID control_out {:?} {=[u8]:x}", req, data);
if let RequestType::Class = req.request_type {
match req.request {
HID_REQ_SET_IDLE => {
if let Some(handler) = self.request_handler {
let id = req.value as u8;
let id = (id != 0).then(|| ReportId::In(id));
let dur = u32::from(req.value >> 8);
let dur = if dur == 0 { u32::MAX } else { 4 * dur };
handler.set_idle_ms(id, dur);
}
OutResponse::Accepted
}
HID_REQ_SET_REPORT => match (ReportId::try_from(req.value), self.request_handler) {
(Ok(id), Some(handler)) => handler.set_report(id, data),
_ => OutResponse::Rejected,
},
HID_REQ_SET_PROTOCOL => {
if req.value == 1 {
OutResponse::Accepted
} else {
warn!("HID Boot Protocol is unsupported.");
OutResponse::Rejected // UNSUPPORTED: Boot Protocol
}
}
_ => OutResponse::Rejected,
}
} else {
OutResponse::Rejected // UNSUPPORTED: SET_DESCRIPTOR
}
}
fn control_in<'a>(&'a mut self, req: Request, buf: &'a mut [u8]) -> InResponse<'a> {
trace!("HID control_in {:?}", req);
match req.request {
HID_REQ_GET_REPORT => {
let size = match ReportId::try_from(req.value) {
Ok(id) => self.request_handler.and_then(|x| x.get_report(id, buf)),
Err(_) => None,
};
if let Some(size) = size {
InResponse::Accepted(&buf[0..size])
} else {
InResponse::Rejected
}
}
HID_REQ_GET_IDLE => {
if let Some(handler) = self.request_handler {
let id = req.value as u8;
let id = (id != 0).then(|| ReportId::In(id));
if let Some(dur) = handler.get_idle_ms(id) {
let dur = u8::try_from(dur / 4).unwrap_or(0);
buf[0] = dur;
InResponse::Accepted(&buf[0..1])
} else {
InResponse::Rejected
}
} else {
InResponse::Rejected
}
}
HID_REQ_GET_PROTOCOL => {
// UNSUPPORTED: Boot Protocol
buf[0] = 1;
InResponse::Accepted(&buf[0..1])
}
_ => InResponse::Rejected,
}
}
}

View File

@ -0,0 +1,3 @@
pub mod cdc_acm;
pub mod cdc_ncm;
pub mod hid;

View File

@ -7,6 +7,7 @@ pub(crate) mod fmt;
pub use embassy_usb_driver as driver;
mod builder;
pub mod class;
pub mod control;
pub mod descriptor;
mod descriptor_reader;