441: Add implementation of async trait for STM32 I2C v2 r=Dirbaio a=lulf

* Add DMA read implementation for I2C v2
* Add example using DMA for I2C

Co-authored-by: Ulf Lilleengen <ulf.lilleengen@gmail.com>
This commit is contained in:
bors[bot] 2021-10-26 11:49:45 +00:00 committed by GitHub
commit f8bd9d2b1c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 184 additions and 20 deletions

View File

@ -1,9 +1,11 @@
use core::cmp; use core::cmp;
use core::future::Future;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::task::Poll; use core::task::Poll;
use atomic_polyfill::{AtomicUsize, Ordering}; use atomic_polyfill::{AtomicUsize, Ordering};
use embassy::interrupt::InterruptExt; use embassy::interrupt::InterruptExt;
use embassy::traits::i2c::I2c as I2cTrait;
use embassy::util::Unborrow; use embassy::util::Unborrow;
use embassy::waitqueue::AtomicWaker; use embassy::waitqueue::AtomicWaker;
use embassy_hal_common::drop::OnDrop; use embassy_hal_common::drop::OnDrop;
@ -139,14 +141,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
} }
} }
fn master_read(&mut self, address: u8, length: usize, stop: Stop, reload: bool, restart: bool) { unsafe fn master_read(address: u8, length: usize, stop: Stop, reload: bool, restart: bool) {
assert!(length < 256 && length > 0); assert!(length < 256 && length > 0);
if !restart { if !restart {
// Wait for any previous address sequence to end // Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus // automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq) // cycle (ie. up to 0.5/freq)
while unsafe { T::regs().cr2().read().start() == i2c::vals::Start::START } {} while T::regs().cr2().read().start() == i2c::vals::Start::START {}
} }
// Set START and prepare to receive bytes into // Set START and prepare to receive bytes into
@ -159,17 +161,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
i2c::vals::Reload::COMPLETED i2c::vals::Reload::COMPLETED
}; };
unsafe { T::regs().cr2().modify(|w| {
T::regs().cr2().modify(|w| { w.set_sadd((address << 1 | 0) as u16);
w.set_sadd((address << 1 | 0) as u16); w.set_add10(i2c::vals::Add::BIT7);
w.set_add10(i2c::vals::Add::BIT7); w.set_rd_wrn(i2c::vals::RdWrn::READ);
w.set_rd_wrn(i2c::vals::RdWrn::READ); w.set_nbytes(length as u8);
w.set_nbytes(length as u8); w.set_start(i2c::vals::Start::START);
w.set_start(i2c::vals::Start::START); w.set_autoend(stop.autoend());
w.set_autoend(stop.autoend()); w.set_reload(reload);
w.set_reload(reload); });
});
}
} }
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool) { unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool) {
@ -309,13 +309,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}; };
let last_chunk_idx = total_chunks.saturating_sub(1); let last_chunk_idx = total_chunks.saturating_sub(1);
self.master_read( unsafe {
address, Self::master_read(
buffer.len().min(255), address,
Stop::Automatic, buffer.len().min(255),
last_chunk_idx != 0, Stop::Automatic,
restart, last_chunk_idx != 0,
); restart,
);
}
for (number, chunk) in buffer.chunks_mut(255).enumerate() { for (number, chunk) in buffer.chunks_mut(255).enumerate() {
if number != 0 { if number != 0 {
@ -482,6 +484,88 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
async fn read_dma_internal(
&mut self,
address: u8,
buffer: &mut [u8],
restart: bool,
) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
let total_len = buffer.len();
let completed_chunks = total_len / 255;
let total_chunks = if completed_chunks * 255 == total_len {
completed_chunks
} else {
completed_chunks + 1
};
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr1().modify(|w| {
w.set_rxdmaen(true);
w.set_tcie(true);
});
let src = regs.rxdr().ptr() as *mut u8;
let ch = &mut self.rx_dma;
ch.read(ch.request(), src, buffer)
};
let state_number = T::state_number();
STATE.chunks_transferred[state_number].store(0, Ordering::Relaxed);
let mut remaining_len = total_len;
let _on_drop = OnDrop::new(|| {
let regs = T::regs();
unsafe {
regs.cr1().modify(|w| {
w.set_rxdmaen(false);
w.set_tcie(false);
})
}
});
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
Self::master_read(
address,
total_len.min(255),
Stop::Software,
total_chunks != 1,
restart,
);
}
poll_fn(|cx| {
STATE.waker[state_number].register(cx.waker());
let chunks_transferred = STATE.chunks_transferred[state_number].load(Ordering::Relaxed);
if chunks_transferred == total_chunks {
return Poll::Ready(());
} else if chunks_transferred != 0 {
remaining_len = remaining_len.saturating_sub(255);
let last_piece = chunks_transferred + 1 == total_chunks;
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
Self::master_continue(remaining_len.min(255), !last_piece);
T::regs().cr1().modify(|w| w.set_tcie(true));
}
}
Poll::Pending
})
.await;
dma_transfer.await;
// This should be done already
self.wait_tc()?;
self.master_stop();
Ok(())
}
pub async fn write_dma(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> pub async fn write_dma(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
where where
TXDMA: crate::i2c::TxDma<T>, TXDMA: crate::i2c::TxDma<T>,
@ -511,6 +595,18 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(()) Ok(())
} }
pub async fn read_dma(
&mut self,
address: u8,
buffer: &mut [u8],
restart: bool,
) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
self.read_dma_internal(address, buffer, restart).await
}
pub fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> { pub fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
if bytes.is_empty() { if bytes.is_empty() {
return Err(Error::ZeroLengthTransfer); return Err(Error::ZeroLengthTransfer);
@ -754,3 +850,36 @@ impl Timings {
} }
} }
} }
impl<'d, T: Instance, TXDMA: super::TxDma<T>, RXDMA: super::RxDma<T>> I2cTrait<u8>
for I2c<'d, T, TXDMA, RXDMA>
{
type Error = super::Error;
#[rustfmt::skip]
type WriteFuture<'a> where 'd: 'a, T: 'a, TXDMA: 'a, RXDMA: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
#[rustfmt::skip]
type ReadFuture<'a> where 'd: 'a, T: 'a, TXDMA: 'a, RXDMA: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
#[rustfmt::skip]
type WriteReadFuture<'a> where 'd: 'a, T: 'a, TXDMA: 'a, RXDMA: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
fn read<'a>(&'a mut self, address: u8, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read_dma(address, buffer, false)
}
fn write<'a>(&'a mut self, address: u8, bytes: &'a [u8]) -> Self::WriteFuture<'a> {
self.write_dma(address, bytes)
}
fn write_read<'a>(
&'a mut self,
address: u8,
bytes: &'a [u8],
buffer: &'a mut [u8],
) -> Self::WriteReadFuture<'a> {
async move {
self.write_dma(address, bytes).await?;
self.read_dma(address, buffer, true).await
}
}
}

View File

@ -0,0 +1,35 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use embassy::executor::Spawner;
use embassy::traits::i2c::I2c as I2cTrait;
use embassy_stm32::i2c::I2c;
use embassy_stm32::interrupt;
use embassy_stm32::time::Hertz;
use embassy_stm32::Peripherals;
use example_common::{info, unwrap};
const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
#[embassy::main]
async fn main(_spawner: Spawner, p: Peripherals) -> ! {
let irq = interrupt::take!(I2C2_EV);
let mut i2c = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
irq,
p.DMA1_CH4,
p.DMA1_CH5,
Hertz(100_000),
);
let mut data = [0u8; 1];
unwrap!(i2c.write_read(ADDRESS, &[WHOAMI], &mut data).await);
info!("Whoami: {}", data[0]);
}