Merge branch 'embassy-rs:master' into master

This commit is contained in:
Chuck Davis 2023-04-30 11:09:43 -05:00 committed by GitHub
commit ff6748a0d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 216 additions and 18 deletions

View File

@ -617,6 +617,28 @@ mod eh02 {
self.blocking_write_read(address, bytes, buffer)
}
}
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Transactional for I2c<'d, T, M> {
type Error = Error;
fn exec(
&mut self,
address: u8,
operations: &mut [embedded_hal_02::blocking::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
Self::setup(address.into())?;
for i in 0..operations.len() {
let last = i == operations.len() - 1;
match &mut operations[i] {
embedded_hal_02::blocking::i2c::Operation::Read(buf) => {
self.read_blocking_internal(buf, false, last)?
}
embedded_hal_02::blocking::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?,
}
}
Ok(())
}
}
}
#[cfg(feature = "unstable-traits")]

178
embassy-stm32/src/ipcc.rs Normal file
View File

@ -0,0 +1,178 @@
use embassy_hal_common::{into_ref, Peripheral, PeripheralRef};
use crate::ipcc::sealed::Instance;
use crate::peripherals::IPCC;
use crate::rcc::sealed::RccPeripheral;
#[non_exhaustive]
#[derive(Clone, Copy, Default)]
pub struct Config {
// TODO: add IPCC peripheral configuration, if any, here
// reserved for future use
}
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub enum IpccChannel {
Channel1 = 0,
Channel2 = 1,
Channel3 = 2,
Channel4 = 3,
Channel5 = 4,
Channel6 = 5,
}
pub(crate) mod sealed {
pub trait Instance: crate::rcc::RccPeripheral {
fn regs() -> crate::pac::ipcc::Ipcc;
fn set_cpu2(enabled: bool);
}
}
pub struct Ipcc<'d> {
_peri: PeripheralRef<'d, IPCC>,
}
impl<'d> Ipcc<'d> {
pub fn new(peri: impl Peripheral<P = IPCC> + 'd, _config: Config) -> Self {
into_ref!(peri);
Self { _peri: peri }
}
pub fn init(&mut self) {
IPCC::enable();
IPCC::reset();
IPCC::set_cpu2(true);
unsafe { _configure_pwr() };
let regs = IPCC::regs();
unsafe {
regs.cpu(0).cr().modify(|w| {
w.set_rxoie(true);
w.set_txfie(true);
})
}
}
pub fn c1_set_rx_channel(&mut self, channel: IpccChannel, enabled: bool) {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { regs.cpu(0).mr().modify(|w| w.set_chom(channel as usize, !enabled)) }
}
pub fn c1_get_rx_channel(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { !regs.cpu(0).mr().read().chom(channel as usize) }
}
pub fn c2_set_rx_channel(&mut self, channel: IpccChannel, enabled: bool) {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { regs.cpu(1).mr().modify(|w| w.set_chom(channel as usize, !enabled)) }
}
pub fn c2_get_rx_channel(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { !regs.cpu(1).mr().read().chom(channel as usize) }
}
pub fn c1_set_tx_channel(&mut self, channel: IpccChannel, enabled: bool) {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { regs.cpu(0).mr().modify(|w| w.set_chfm(channel as usize, !enabled)) }
}
pub fn c1_get_tx_channel(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { !regs.cpu(0).mr().read().chfm(channel as usize) }
}
pub fn c2_set_tx_channel(&mut self, channel: IpccChannel, enabled: bool) {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { regs.cpu(1).mr().modify(|w| w.set_chfm(channel as usize, !enabled)) }
}
pub fn c2_get_tx_channel(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
// If bit is set to 1 then interrupt is disabled
unsafe { !regs.cpu(1).mr().read().chfm(channel as usize) }
}
/// clears IPCC receive channel status for CPU1
pub fn c1_clear_flag_channel(&mut self, channel: IpccChannel) {
let regs = IPCC::regs();
unsafe { regs.cpu(0).scr().write(|w| w.set_chc(channel as usize, true)) }
}
/// clears IPCC receive channel status for CPU2
pub fn c2_clear_flag_channel(&mut self, channel: IpccChannel) {
let regs = IPCC::regs();
unsafe { regs.cpu(1).scr().write(|w| w.set_chc(channel as usize, true)) }
}
pub fn c1_set_flag_channel(&mut self, channel: IpccChannel) {
let regs = IPCC::regs();
unsafe { regs.cpu(0).scr().write(|w| w.set_chs(channel as usize, true)) }
}
pub fn c2_set_flag_channel(&mut self, channel: IpccChannel) {
let regs = IPCC::regs();
unsafe { regs.cpu(1).scr().write(|w| w.set_chs(channel as usize, true)) }
}
pub fn c1_is_active_flag(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
unsafe { regs.cpu(0).sr().read().chf(channel as usize) }
}
pub fn c2_is_active_flag(&self, channel: IpccChannel) -> bool {
let regs = IPCC::regs();
unsafe { regs.cpu(1).sr().read().chf(channel as usize) }
}
pub fn is_tx_pending(&self, channel: IpccChannel) -> bool {
!self.c1_is_active_flag(channel) && self.c1_get_tx_channel(channel)
}
pub fn is_rx_pending(&self, channel: IpccChannel) -> bool {
self.c2_is_active_flag(channel) && self.c1_get_rx_channel(channel)
}
}
impl sealed::Instance for crate::peripherals::IPCC {
fn regs() -> crate::pac::ipcc::Ipcc {
crate::pac::IPCC
}
fn set_cpu2(enabled: bool) {
unsafe { crate::pac::PWR.cr4().modify(|w| w.set_c2boot(enabled)) }
}
}
unsafe fn _configure_pwr() {
let rcc = crate::pac::RCC;
// set RF wake-up clock = LSE
rcc.csr().modify(|w| w.set_rfwkpsel(0b01));
}

View File

@ -44,6 +44,8 @@ pub mod i2c;
#[cfg(crc)]
pub mod crc;
pub mod flash;
#[cfg(stm32wb)]
pub mod ipcc;
pub mod pwm;
#[cfg(quadspi)]
pub mod qspi;

View File

@ -497,28 +497,24 @@ impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
unreachable!();
}
if !enable_idle_line_detection {
transfer.await;
if enable_idle_line_detection {
// clear idle flag
let sr = sr(r).read();
// This read also clears the error and idle interrupt flags on v1.
rdr(r).read_volatile();
clear_interrupt_flags(r, sr);
return Ok(ReadCompletionEvent::DmaCompleted);
// enable idle interrupt
r.cr1().modify(|w| {
w.set_idleie(true);
});
}
// clear idle flag
let sr = sr(r).read();
// This read also clears the error and idle interrupt flags on v1.
rdr(r).read_volatile();
clear_interrupt_flags(r, sr);
// enable idle interrupt
r.cr1().modify(|w| {
w.set_idleie(true);
});
}
compiler_fence(Ordering::SeqCst);
// future which completes when idle line is detected
let idle = poll_fn(move |cx| {
// future which completes when idle line or error is detected
let abort = poll_fn(move |cx| {
let s = T::state();
s.rx_waker.register(cx.waker());
@ -554,7 +550,7 @@ impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
}
}
if sr.idle() {
if enable_idle_line_detection && sr.idle() {
// Idle line detected
return Poll::Ready(Ok(()));
}
@ -565,7 +561,7 @@ impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> {
// wait for the first of DMA request or idle line detected to completes
// select consumes its arguments
// when transfer is dropped, it will stop the DMA request
let r = match select(transfer, idle).await {
let r = match select(transfer, abort).await {
// DMA transfer completed first
Either::Left(((), _)) => Ok(ReadCompletionEvent::DmaCompleted),