Rustflags apply to ALL the crates in the graph, while we only need
them for the toplevel crate which is the only one getting linked.
Rustflags are not equal for all crates, this caused cargo to re-build the
same dependency crate multiple times uselessly. After this change, deps
are reused more, making builds faster.
Note that this only applies when sharing the target/ dir for multiple crates
in the repo which is not the default.
This crate contains async radio drivers for various lora drivers that
work with embassy timers. The code is imported from Drogue Device (
https://github.com/drogue-iot/drogue-device)
The radio drivers integrate with the async LoRaWAN MAC layer in the
lorawan-device crate.
Also added is an example for the STM32WL55 and for STM32L0 (requires
the LoRa Discovery board) for LoRaWAN. Future work is to make the
underlying radio drivers using fully async SPI when communicating
with the peripheral.
* Add IRQ-driven buffered USART implementation for STM32 v2 usart
* Implementation based on nRF UARTE, but simplified to not use DMA to
avoid complex interaction between DMA and USART.
* Implementation of AsyncBufRead and AsyncWrite traits
* Some unit tests to ring buffer
* Update polyfill version
* Update sub module to get usart IRQ fix
Previously the cargo configurations of all of the example projects had
`build-std = ["core"]`, which forces compilation of `core` as a
code-size optimisation. However, this is strictly unnecessary and will
currently break for users who do not use `rustup` directly (e.g. nix
users).
* Chips that have multiple cores will be exposed as chipname_corename,
i.e. stm32wl55jc_cm4
* Chips that have single cores will use the chip family as feature name
and pick the first and only core from the list
* Add support for stm32wl55 chip family