Compare commits

...

1 Commits

Author SHA1 Message Date
Dario Nieuwenhuis
5b61ab852a blah 2022-11-06 23:35:37 +01:00
7 changed files with 680 additions and 528 deletions

View File

@ -0,0 +1,154 @@
use core::slice;
use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
pub struct RingBuffer {
buf: AtomicPtr<u8>,
len: AtomicUsize,
start: AtomicUsize,
end: AtomicUsize,
}
pub struct Reader<'a>(&'a RingBuffer);
pub struct Writer<'a>(&'a RingBuffer);
impl RingBuffer {
pub const fn new() -> Self {
Self {
buf: AtomicPtr::new(core::ptr::null_mut()),
len: AtomicUsize::new(0),
start: AtomicUsize::new(0),
end: AtomicUsize::new(0),
}
}
/// # Safety
/// - The buffer (`buf .. buf+len`) must be valid memory until `deinit` is called.
/// - Must not be called concurrently with any other methods.
pub unsafe fn init(&self, buf: *mut u8, len: usize) {
self.buf.store(buf, Ordering::Relaxed);
self.len.store(len, Ordering::Relaxed);
self.start.store(0, Ordering::Relaxed);
self.end.store(0, Ordering::Relaxed);
}
pub unsafe fn deinit(&self) {
self.len.store(0, Ordering::Relaxed);
}
pub unsafe fn reader(&self) -> Reader<'_> {
Reader(self)
}
pub unsafe fn writer(&self) -> Writer<'_> {
Writer(self)
}
pub fn is_full(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
self.wrap(end + 1) == start
}
pub fn is_empty(&self) -> bool {
let start = self.start.load(Ordering::Relaxed);
let end = self.end.load(Ordering::Relaxed);
start == end
}
pub fn wrap(&self, n: usize) -> usize {
let len = self.len.load(Ordering::Relaxed);
assert!(n <= len);
if n == len {
0
} else {
n
}
}
}
impl<'a> Writer<'a> {
pub fn push(&self, f: impl FnOnce(&mut [u8]) -> usize) -> usize {
let (p, n) = self.push_buf();
let buf = unsafe { slice::from_raw_parts_mut(p, n) };
let n = f(buf);
self.push_done(n);
n
}
pub fn push_one(&self, val: u8) -> bool {
let n = self.push(|f| match f {
[] => 0,
[x, ..] => {
*x = val;
1
}
});
n != 0
}
pub fn push_buf(&self) -> (*mut u8, usize) {
let start = self.0.start.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let end = self.0.end.load(Ordering::Relaxed);
let n = if start <= end {
len - end - (start == 0) as usize
} else {
start - end - 1
};
trace!(" ringbuf: push_buf {:?}..{:?}", end, end + n);
(unsafe { buf.add(end) }, n)
}
pub fn push_done(&self, n: usize) {
trace!(" ringbuf: push {:?}", n);
let end = self.0.end.load(Ordering::Relaxed);
self.0.end.store(self.0.wrap(end + n), Ordering::Release);
}
}
impl<'a> Reader<'a> {
pub fn pop(&self, f: impl FnOnce(&[u8]) -> usize) -> usize {
let (p, n) = self.pop_buf();
let buf = unsafe { slice::from_raw_parts(p, n) };
let n = f(buf);
self.pop_done(n);
n
}
pub fn pop_one(&self) -> Option<u8> {
let mut res = None;
self.pop(|f| match f {
&[] => 0,
&[x, ..] => {
res = Some(x);
1
}
});
res
}
pub fn pop_buf(&self) -> (*mut u8, usize) {
let end = self.0.end.load(Ordering::Acquire);
let buf = self.0.buf.load(Ordering::Relaxed);
let len = self.0.len.load(Ordering::Relaxed);
let start = self.0.start.load(Ordering::Relaxed);
let n = if end < start { len - start } else { end - start };
trace!(" ringbuf: pop_buf {:?}..{:?}", start, start + n);
(unsafe { buf.add(start) }, n)
}
pub fn pop_done(&self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
let start = self.0.start.load(Ordering::Relaxed);
self.0.start.store(self.0.wrap(start + n), Ordering::Release);
}
}

View File

@ -4,6 +4,7 @@
// This mod MUST go first, so that the others see its macros. // This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt; pub(crate) mod fmt;
pub mod atomic_ring_buffer;
pub mod drop; pub mod drop;
mod macros; mod macros;
mod peripheral; mod peripheral;

View File

@ -34,3 +34,27 @@ declare!(ADC_IRQ_FIFO);
declare!(I2C0_IRQ); declare!(I2C0_IRQ);
declare!(I2C1_IRQ); declare!(I2C1_IRQ);
declare!(RTC_IRQ); declare!(RTC_IRQ);
pub trait InterruptFunction {
fn on_interrupt();
}
// Marker trait
pub unsafe trait Registration<T: Interrupt> {}
#[macro_export]
macro_rules! register_interrupts {
($name:ident: $($irq:ident),*) => {
struct $name;
$(
#[allow(non_snake_case)]
#[no_mangle]
extern "C" fn $irq() {
<$crate::interrupt::$irq as $crate::interrupt::InterruptFunction>::on_interrupt();
}
unsafe impl $crate::interrupt::Registration<$crate::interrupt::$irq> for $name {}
)*
};
}

View File

@ -1,331 +1,262 @@
use core::future::{poll_fn, Future}; use core::future::{poll_fn, Future};
use core::task::{Poll, Waker}; use core::slice;
use core::task::Poll;
use atomic_polyfill::{compiler_fence, Ordering}; use cortex_m::peripheral::NVIC;
use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage}; use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_hal_common::ring_buffer::RingBuffer; use embassy_sync::waitqueue::AtomicWaker;
use embassy_sync::waitqueue::WakerRegistration;
use super::*; use super::*;
use crate::interrupt::Registration;
pub struct State<'d, T: Instance>(StateStorage<FullStateInner<'d, T>>); pub(crate) struct State {
impl<'d, T: Instance> State<'d, T> { tx_waker: AtomicWaker,
tx_buf: RingBuffer,
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self { pub const fn new() -> Self {
Self(StateStorage::new()) Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
} }
} }
pub struct RxState<'d, T: Instance>(StateStorage<RxStateInner<'d, T>>); pub struct BufferedUart<'d> {
impl<'d, T: Instance> RxState<'d, T> { info: &'static Info,
pub const fn new() -> Self { phantom: PhantomData<&'d mut ()>,
Self(StateStorage::new())
}
} }
pub struct TxState<'d, T: Instance>(StateStorage<TxStateInner<'d, T>>); pub struct BufferedUartRx<'d> {
impl<'d, T: Instance> TxState<'d, T> { info: &'static Info,
pub const fn new() -> Self { phantom: PhantomData<&'d mut ()>,
Self(StateStorage::new())
}
} }
struct RxStateInner<'d, T: Instance> { pub struct BufferedUartTx<'d> {
phantom: PhantomData<&'d mut T>, info: &'static Info,
phantom: PhantomData<&'d mut ()>,
waker: WakerRegistration,
buf: RingBuffer<'d>,
} }
struct TxStateInner<'d, T: Instance> { impl<'d> BufferedUart<'d> {
phantom: PhantomData<&'d mut T>, pub fn new<T: Instance>(
_uart: impl Peripheral<P = T> + 'd,
waker: WakerRegistration, _irq: impl Registration<T::Interrupt>,
buf: RingBuffer<'d>, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
} rx: impl Peripheral<P = impl RxPin<T>> + 'd,
struct FullStateInner<'d, T: Instance> {
rx: RxStateInner<'d, T>,
tx: TxStateInner<'d, T>,
}
unsafe impl<'d, T: Instance> Send for RxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for RxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Send for TxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for TxStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Send for FullStateInner<'d, T> {}
unsafe impl<'d, T: Instance> Sync for FullStateInner<'d, T> {}
pub struct BufferedUart<'d, T: Instance> {
inner: PeripheralMutex<'d, FullStateInner<'d, T>>,
}
pub struct BufferedUartRx<'d, T: Instance> {
inner: PeripheralMutex<'d, RxStateInner<'d, T>>,
}
pub struct BufferedUartTx<'d, T: Instance> {
inner: PeripheralMutex<'d, TxStateInner<'d, T>>,
}
impl<'d, T: Instance> Unpin for BufferedUart<'d, T> {}
impl<'d, T: Instance> Unpin for BufferedUartRx<'d, T> {}
impl<'d, T: Instance> Unpin for BufferedUartTx<'d, T> {}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new<M: Mode>(
state: &'d mut State<'d, T>,
_uart: Uart<'d, T, M>,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8], rx_buffer: &'d mut [u8],
) -> BufferedUart<'d, T> { config: Config,
into_ref!(irq); ) -> Self {
into_ref!(tx, rx);
Self::new_inner(
T::info(),
tx.map_into(),
rx.map_into(),
None,
None,
tx_buffer,
rx_buffer,
config,
)
}
pub fn new_with_rtscts<T: Instance>(
_uart: impl Peripheral<P = T> + 'd,
_irq: impl Registration<T::Interrupt>,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
Self::new_inner(
T::info(),
tx.map_into(),
rx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
tx_buffer,
rx_buffer,
config,
)
}
fn new_inner(
info: &'static Info,
mut tx: PeripheralRef<'d, AnyPin>,
mut rx: PeripheralRef<'d, AnyPin>,
mut rts: Option<PeripheralRef<'d, AnyPin>>,
mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
init(
info,
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
let len = tx_buffer.len();
unsafe { info.state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { info.state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
let r = T::regs();
unsafe { unsafe {
r.uartimsc().modify(|w| { info.regs.uartimsc().modify(|w| {
w.set_rxim(true); w.set_rxim(true);
w.set_rtim(true); w.set_rtim(true);
w.set_txim(true); w.set_txim(true);
}); });
NVIC::unpend(info.irq);
NVIC::unmask(info.irq);
NVIC::pend(info.irq);
} }
Self { Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || FullStateInner { info,
tx: TxStateInner {
phantom: PhantomData, phantom: PhantomData,
waker: WakerRegistration::new(),
buf: RingBuffer::new(tx_buffer),
},
rx: RxStateInner {
phantom: PhantomData,
waker: WakerRegistration::new(),
buf: RingBuffer::new(rx_buffer),
},
}),
} }
} }
} }
impl<'d, T: Instance> BufferedUartRx<'d, T> { impl<'d> BufferedUartRx<'d> {
pub fn new<M: Mode>( pub fn new<T: Instance>(
state: &'d mut RxState<'d, T>, _uart: impl Peripheral<P = T> + 'd,
_uart: UartRx<'d, T, M>, irq: impl Registration<T::Interrupt>,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx_buffer: &'d mut [u8], rx_buffer: &'d mut [u8],
) -> BufferedUartRx<'d, T> { config: Config,
into_ref!(irq); ) -> BufferedUartRx<'d> {
let info = T::info();
let r = T::regs();
unsafe { unsafe {
r.uartimsc().modify(|w| { info.regs.uartimsc().modify(|w| {
w.set_rxim(true); w.set_rxim(true);
w.set_rtim(true); w.set_rtim(true);
}); });
NVIC::unpend(info.irq);
NVIC::unmask(info.irq);
} }
Self { Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || RxStateInner { info,
phantom: PhantomData, phantom: PhantomData,
buf: RingBuffer::new(rx_buffer),
waker: WakerRegistration::new(),
}),
} }
} }
} }
impl<'d, T: Instance> BufferedUartTx<'d, T> { impl<'d> BufferedUartTx<'d> {
pub fn new<M: Mode>( pub fn new<T: Instance>(
state: &'d mut TxState<'d, T>, _uart: impl Peripheral<P = T> + 'd,
_uart: UartTx<'d, T, M>, irq: impl Registration<T::Interrupt>,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8],
) -> BufferedUartTx<'d, T> { config: Config,
into_ref!(irq); ) -> BufferedUartTx<'d> {
let info = T::info();
let r = T::regs();
unsafe { unsafe {
r.uartimsc().modify(|w| { info.regs.uartimsc().modify(|w| {
w.set_txim(true); w.set_txim(true);
}); });
NVIC::unpend(info.irq);
NVIC::unmask(info.irq);
} }
Self { Self {
inner: PeripheralMutex::new(irq, &mut state.0, move || TxStateInner { info,
phantom: PhantomData, phantom: PhantomData,
buf: RingBuffer::new(tx_buffer),
waker: WakerRegistration::new(),
}),
} }
} }
} }
impl<'d, T: Instance> PeripheralState for FullStateInner<'d, T> impl<'d> Drop for BufferedUart<'d> {
where fn drop(&mut self) {
Self: 'd, NVIC::mask(self.info.irq);
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
self.rx.on_interrupt();
self.tx.on_interrupt();
} }
} }
impl<'d, T: Instance> RxStateInner<'d, T> impl<'d> Drop for BufferedUartRx<'d> {
where fn drop(&mut self) {
Self: 'd, NVIC::mask(self.info.irq);
{
fn read(&mut self, buf: &mut [u8], waker: &Waker) -> (Poll<Result<usize, Error>>, bool) {
// We have data ready in buffer? Return it.
let mut do_pend = false;
let data = self.buf.pop_buf();
if !data.is_empty() {
let len = data.len().min(buf.len());
buf[..len].copy_from_slice(&data[..len]);
if self.buf.is_full() {
do_pend = true;
}
self.buf.pop(len);
return (Poll::Ready(Ok(len)), do_pend);
}
self.waker.register(waker);
(Poll::Pending, do_pend)
}
fn fill_buf<'a>(&mut self, waker: &Waker) -> Poll<Result<&'a [u8], Error>> {
// We have data ready in buffer? Return it.
let buf = self.buf.pop_buf();
if !buf.is_empty() {
let buf: &[u8] = buf;
// Safety: buffer lives as long as uart
let buf: &[u8] = unsafe { core::mem::transmute(buf) };
return Poll::Ready(Ok(buf));
}
self.waker.register(waker);
Poll::Pending
}
fn consume(&mut self, amt: usize) -> bool {
let full = self.buf.is_full();
self.buf.pop(amt);
full
} }
} }
impl<'d, T: Instance> PeripheralState for RxStateInner<'d, T> impl<'d> Drop for BufferedUartTx<'d> {
where fn drop(&mut self) {
Self: 'd, NVIC::mask(self.info.irq);
{ }
type Interrupt = T::Interrupt; }
fn on_interrupt(&mut self) {
let r = T::regs(); pub(crate) fn on_interrupt(info: &'static Info) {
trace!("on_interrupt");
let r = info.regs;
let s = info.state;
unsafe { unsafe {
// RX
let ris = r.uartris().read(); let ris = r.uartris().read();
// Clear interrupt flags // Clear interrupt flags
r.uarticr().modify(|w| { r.uarticr().write(|w| {
w.set_rxic(true); w.set_rxic(true);
w.set_rtic(true); w.set_rtic(true);
}); });
if ris.peris() { if ris.peris() {
warn!("Parity error"); warn!("Parity error");
r.uarticr().modify(|w| { r.uarticr().write(|w| {
w.set_peic(true); w.set_peic(true);
}); });
} }
if ris.feris() { if ris.feris() {
warn!("Framing error"); warn!("Framing error");
r.uarticr().modify(|w| { r.uarticr().write(|w| {
w.set_feic(true); w.set_feic(true);
}); });
} }
if ris.beris() { if ris.beris() {
warn!("Break error"); warn!("Break error");
r.uarticr().modify(|w| { r.uarticr().write(|w| {
w.set_beic(true); w.set_beic(true);
}); });
} }
if ris.oeris() { if ris.oeris() {
warn!("Overrun error"); warn!("Overrun error");
r.uarticr().modify(|w| { r.uarticr().write(|w| {
w.set_oeic(true); w.set_oeic(true);
}); });
} }
let rx_writer = s.rx_buf.writer();
if !r.uartfr().read().rxfe() { if !r.uartfr().read().rxfe() {
let buf = self.buf.push_buf(); let val = r.uartdr().read().data();
if !buf.is_empty() { if !rx_writer.push_one(val) {
buf[0] = r.uartdr().read().data();
self.buf.push(1);
} else {
warn!("RX buffer full, discard received byte"); warn!("RX buffer full, discard received byte");
} }
s.rx_waker.wake();
if self.buf.is_full() {
self.waker.wake();
}
} }
if ris.rtris() { // TX
self.waker.wake(); let tx_reader = s.tx_buf.reader();
}; if let Some(val) = tx_reader.pop_one() {
}
}
}
impl<'d, T: Instance> TxStateInner<'d, T>
where
Self: 'd,
{
fn write(&mut self, buf: &[u8], waker: &Waker) -> (Poll<Result<usize, Error>>, bool) {
let empty = self.buf.is_empty();
let tx_buf = self.buf.push_buf();
if tx_buf.is_empty() {
self.waker.register(waker);
return (Poll::Pending, empty);
}
let n = core::cmp::min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
self.buf.push(n);
(Poll::Ready(Ok(n)), empty)
}
fn flush(&mut self, waker: &Waker) -> Poll<Result<(), Error>> {
if !self.buf.is_empty() {
self.waker.register(waker);
return Poll::Pending;
}
Poll::Ready(Ok(()))
}
}
impl<'d, T: Instance> PeripheralState for TxStateInner<'d, T>
where
Self: 'd,
{
type Interrupt = T::Interrupt;
fn on_interrupt(&mut self) {
let r = T::regs();
unsafe {
let buf = self.buf.pop_buf();
if !buf.is_empty() {
r.uartimsc().modify(|w| { r.uartimsc().modify(|w| {
w.set_txim(true); w.set_txim(true);
}); });
r.uartdr().write(|w| w.set_data(buf[0].into())); r.uartdr().write(|w| w.set_data(val));
self.buf.pop(1); s.tx_waker.wake();
self.waker.wake();
} else { } else {
// Disable interrupt until we have something to transmit again // Disable interrupt until we have something to transmit again
r.uartimsc().modify(|w| { r.uartimsc().modify(|w| {
@ -334,6 +265,71 @@ where
} }
} }
} }
fn read<'a>(info: &'static Info, buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let rx_reader = unsafe { info.state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
if n == 0 {
info.state.rx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(n))
})
}
fn fill_buf<'a>(info: &'static Info) -> impl Future<Output = Result<&'a [u8], Error>> {
poll_fn(move |cx| {
let rx_reader = unsafe { info.state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
info.state.rx_waker.register(cx.waker());
return Poll::Pending;
}
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
}
fn consume(info: &'static Info, amt: usize) {
let rx_reader = unsafe { info.state.rx_buf.reader() };
rx_reader.pop_done(amt)
}
fn write<'a>(info: &'static Info, buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let tx_writer = unsafe { info.state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n == 0 {
info.state.tx_waker.register(cx.waker());
return Poll::Pending;
} else {
NVIC::pend(info.irq);
}
Poll::Ready(Ok(n))
})
}
fn flush(info: &'static Info) -> impl Future<Output = Result<(), Error>> {
poll_fn(move |cx| {
if !info.state.tx_buf.is_empty() {
info.state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
} }
impl embedded_io::Error for Error { impl embedded_io::Error for Error {
@ -342,117 +338,73 @@ impl embedded_io::Error for Error {
} }
} }
impl<'d, T: Instance> embedded_io::Io for BufferedUart<'d, T> { impl<'d> embedded_io::Io for BufferedUart<'d> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance> embedded_io::Io for BufferedUartRx<'d, T> { impl<'d> embedded_io::Io for BufferedUartRx<'d> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance> embedded_io::Io for BufferedUartTx<'d, T> { impl<'d> embedded_io::Io for BufferedUartTx<'d> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUart<'d, T> { impl<'d> embedded_io::asynch::Read for BufferedUart<'d> {
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
poll_fn(move |cx| { read(self.info, buf)
let (res, do_pend) = self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.rx.read(buf, cx.waker())
});
if do_pend {
self.inner.pend();
}
res
})
} }
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUartRx<'d, T> { impl<'d> embedded_io::asynch::Read for BufferedUartRx<'d> {
type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a type ReadFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
poll_fn(move |cx| { read(self.info, buf)
let (res, do_pend) = self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.read(buf, cx.waker())
});
if do_pend {
self.inner.pend();
}
res
})
} }
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUart<'d, T> { impl<'d> embedded_io::asynch::BufRead for BufferedUart<'d> {
type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>> + 'a type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> { fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
poll_fn(move |cx| { fill_buf(self.info)
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.rx.fill_buf(cx.waker())
})
})
} }
fn consume(&mut self, amt: usize) { fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| state.rx.consume(amt)); consume(self.info, amt)
if signal {
self.inner.pend();
}
} }
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> { impl<'d> embedded_io::asynch::BufRead for BufferedUartRx<'d> {
type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>> + 'a type FillBufFuture<'a> = impl Future<Output = Result<&'a [u8], Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> { fn fill_buf<'a>(&'a mut self) -> Self::FillBufFuture<'a> {
poll_fn(move |cx| { fill_buf(self.info)
self.inner.with(|state| {
compiler_fence(Ordering::SeqCst);
state.fill_buf(cx.waker())
})
})
} }
fn consume(&mut self, amt: usize) { fn consume(&mut self, amt: usize) {
let signal = self.inner.with(|state| state.consume(amt)); consume(self.info, amt)
if signal {
self.inner.pend();
}
} }
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> { impl<'d> embedded_io::asynch::Write for BufferedUart<'d> {
type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
poll_fn(move |cx| { write(self.info, buf)
let (poll, empty) = self.inner.with(|state| state.tx.write(buf, cx.waker()));
if empty {
self.inner.pend();
}
poll
})
} }
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a
@ -460,23 +412,17 @@ impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> {
Self: 'a; Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
poll_fn(move |cx| self.inner.with(|state| state.tx.flush(cx.waker()))) flush(self.info)
} }
} }
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUartTx<'d, T> { impl<'d> embedded_io::asynch::Write for BufferedUartTx<'d> {
type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a type WriteFuture<'a> = impl Future<Output = Result<usize, Self::Error>> + 'a
where where
Self: 'a; Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
poll_fn(move |cx| { write(self.info, buf)
let (poll, empty) = self.inner.with(|state| state.write(buf, cx.waker()));
if empty {
self.inner.pend();
}
poll
})
} }
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a
@ -484,6 +430,6 @@ impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUartTx<'d, T>
Self: 'a; Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
poll_fn(move |cx| self.inner.with(|state| state.flush(cx.waker()))) flush(self.info)
} }
} }

View File

@ -5,7 +5,13 @@ use embassy_hal_common::{into_ref, PeripheralRef};
use crate::dma::{AnyChannel, Channel}; use crate::dma::{AnyChannel, Channel};
use crate::gpio::sealed::Pin; use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin; use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral}; use crate::pac::uart as pac;
use crate::{peripherals, Peripheral};
#[cfg(feature = "nightly")]
mod buffered;
#[cfg(feature = "nightly")]
pub use buffered::*;
#[derive(Clone, Copy, PartialEq, Eq, Debug)] #[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DataBits { pub enum DataBits {
@ -77,31 +83,26 @@ pub enum Error {
Framing, Framing,
} }
pub struct Uart<'d, T: Instance, M: Mode> { pub struct Uart<'d, M: Mode> {
tx: UartTx<'d, T, M>, tx: UartTx<'d, M>,
rx: UartRx<'d, T, M>, rx: UartRx<'d, M>,
} }
pub struct UartTx<'d, T: Instance, M: Mode> { pub struct UartTx<'d, M: Mode> {
info: &'static Info,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>, tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>, phantom: PhantomData<M>,
} }
pub struct UartRx<'d, T: Instance, M: Mode> { pub struct UartRx<'d, M: Mode> {
info: &'static Info,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>, rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>, phantom: PhantomData<M>,
}
impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
fn new(tx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self {
tx_dma,
phantom: PhantomData,
}
} }
impl<'d, M: Mode> UartTx<'d, M> {
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let r = T::regs(); let r = self.info.regs;
unsafe { unsafe {
for &b in buffer { for &b in buffer {
while r.uartfr().read().txff() {} while r.uartfr().read().txff() {}
@ -112,38 +113,31 @@ impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
} }
pub fn blocking_flush(&mut self) -> Result<(), Error> { pub fn blocking_flush(&mut self) -> Result<(), Error> {
let r = T::regs(); let r = self.info.regs;
unsafe { while !r.uartfr().read().txfe() {} } unsafe { while !r.uartfr().read().txfe() {} }
Ok(()) Ok(())
} }
} }
impl<'d, T: Instance> UartTx<'d, T, Async> { impl<'d> UartTx<'d, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let ch = self.tx_dma.as_mut().unwrap(); let ch = self.tx_dma.as_mut().unwrap();
let transfer = unsafe { let transfer = unsafe {
T::regs().uartdmacr().modify(|reg| { self.info.regs.uartdmacr().modify(|reg| {
reg.set_txdmae(true); reg.set_txdmae(true);
}); });
// If we don't assign future to a variable, the data register pointer // If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send. // is held across an await and makes the future non-Send.
crate::dma::write(ch, buffer, T::regs().uartdr().ptr() as *mut _, T::TX_DREQ) crate::dma::write(ch, buffer, self.info.regs.uartdr().ptr() as *mut _, self.info.tx_dreq)
}; };
transfer.await; transfer.await;
Ok(()) Ok(())
} }
} }
impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> { impl<'d, M: Mode> UartRx<'d, M> {
fn new(rx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self {
rx_dma,
phantom: PhantomData,
}
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
let r = T::regs(); let r = self.info.regs;
unsafe { unsafe {
for b in buffer { for b in buffer {
*b = loop { *b = loop {
@ -171,37 +165,37 @@ impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> {
} }
} }
impl<'d, T: Instance> UartRx<'d, T, Async> { impl<'d> UartRx<'d, Async> {
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
let ch = self.rx_dma.as_mut().unwrap(); let ch = self.rx_dma.as_mut().unwrap();
let transfer = unsafe { let transfer = unsafe {
T::regs().uartdmacr().modify(|reg| { self.info.regs.uartdmacr().modify(|reg| {
reg.set_rxdmae(true); reg.set_rxdmae(true);
}); });
// If we don't assign future to a variable, the data register pointer // If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send. // is held across an await and makes the future non-Send.
crate::dma::read(ch, T::regs().uartdr().ptr() as *const _, buffer, T::RX_DREQ) crate::dma::read(ch, self.info.regs.uartdr().ptr() as *const _, buffer, self.info.rx_dreq)
}; };
transfer.await; transfer.await;
Ok(()) Ok(())
} }
} }
impl<'d, T: Instance> Uart<'d, T, Blocking> { impl<'d> Uart<'d, Blocking> {
/// Create a new UART without hardware flow control /// Create a new UART without hardware flow control
pub fn new_blocking( pub fn new_blocking<T: Instance>(
uart: impl Peripheral<P = T> + 'd, _uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(tx, rx); into_ref!(tx, rx);
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, None, None, config) Self::new_inner(T::info(), tx.map_into(), rx.map_into(), None, None, None, None, config)
} }
/// Create a new UART with hardware flow control (RTS/CTS) /// Create a new UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts_blocking( pub fn new_with_rtscts_blocking<T: Instance>(
uart: impl Peripheral<P = T> + 'd, _uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd, rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
@ -210,9 +204,9 @@ impl<'d, T: Instance> Uart<'d, T, Blocking> {
) -> Self { ) -> Self {
into_ref!(tx, rx, cts, rts); into_ref!(tx, rx, cts, rts);
Self::new_inner( Self::new_inner(
uart, T::info(),
rx.map_into(),
tx.map_into(), tx.map_into(),
rx.map_into(),
Some(rts.map_into()), Some(rts.map_into()),
Some(cts.map_into()), Some(cts.map_into()),
None, None,
@ -222,10 +216,10 @@ impl<'d, T: Instance> Uart<'d, T, Blocking> {
} }
} }
impl<'d, T: Instance> Uart<'d, T, Async> { impl<'d> Uart<'d, Async> {
/// Create a new DMA enabled UART without hardware flow control /// Create a new DMA enabled UART without hardware flow control
pub fn new( pub fn new<T: Instance>(
uart: impl Peripheral<P = T> + 'd, _uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd, tx_dma: impl Peripheral<P = impl Channel> + 'd,
@ -234,9 +228,9 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
) -> Self { ) -> Self {
into_ref!(tx, rx, tx_dma, rx_dma); into_ref!(tx, rx, tx_dma, rx_dma);
Self::new_inner( Self::new_inner(
uart, T::info(),
rx.map_into(),
tx.map_into(), tx.map_into(),
rx.map_into(),
None, None,
None, None,
Some(tx_dma.map_into()), Some(tx_dma.map_into()),
@ -246,8 +240,8 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
} }
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS) /// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts( pub fn new_with_rtscts<T: Instance>(
uart: impl Peripheral<P = T> + 'd, _uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd, rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
@ -258,7 +252,7 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
) -> Self { ) -> Self {
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma); into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
Self::new_inner( Self::new_inner(
uart, T::info(),
rx.map_into(), rx.map_into(),
tx.map_into(), tx.map_into(),
Some(rts.map_into()), Some(rts.map_into()),
@ -270,44 +264,66 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
} }
} }
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> { impl<'d, M: Mode> Uart<'d, M> {
fn new_inner( fn new_inner(
_uart: impl Peripheral<P = T> + 'd, info: &'static Info,
tx: PeripheralRef<'d, AnyPin>, mut tx: PeripheralRef<'d, AnyPin>,
rx: PeripheralRef<'d, AnyPin>, mut rx: PeripheralRef<'d, AnyPin>,
rts: Option<PeripheralRef<'d, AnyPin>>, mut rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>, mut cts: Option<PeripheralRef<'d, AnyPin>>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>, tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>, rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(_uart); init(
info,
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
Self {
tx: UartTx {
info,
tx_dma,
phantom: PhantomData,
},
rx: UartRx {
info,
rx_dma,
phantom: PhantomData,
},
}
}
}
fn init(
info: &'static Info,
tx: Option<PeripheralRef<'_, AnyPin>>,
rx: Option<PeripheralRef<'_, AnyPin>>,
rts: Option<PeripheralRef<'_, AnyPin>>,
cts: Option<PeripheralRef<'_, AnyPin>>,
config: Config,
) {
let r = info.regs;
unsafe { unsafe {
let r = T::regs(); if let Some(pin) = &tx {
pin.io().ctrl().write(|w| w.set_funcsel(2));
tx.io().ctrl().write(|w| w.set_funcsel(2)); pin.pad_ctrl().write(|w| w.set_ie(true));
rx.io().ctrl().write(|w| w.set_funcsel(2)); }
if let Some(pin) = &rx {
tx.pad_ctrl().write(|w| { pin.io().ctrl().write(|w| w.set_funcsel(2));
w.set_ie(true); pin.pad_ctrl().write(|w| w.set_ie(true));
}); }
rx.pad_ctrl().write(|w| {
w.set_ie(true);
});
if let Some(pin) = &cts { if let Some(pin) = &cts {
pin.io().ctrl().write(|w| w.set_funcsel(2)); pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| { pin.pad_ctrl().write(|w| w.set_ie(true));
w.set_ie(true);
});
} }
if let Some(pin) = &rts { if let Some(pin) = &rts {
pin.io().ctrl().write(|w| w.set_funcsel(2)); pin.io().ctrl().write(|w| w.set_funcsel(2));
pin.pad_ctrl().write(|w| { pin.pad_ctrl().write(|w| w.set_ie(true));
w.set_ie(true);
});
} }
let clk_base = crate::clocks::clk_peri_freq(); let clk_base = crate::clocks::clk_peri_freq();
@ -325,8 +341,8 @@ impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
} }
// Load PL011's baud divisor registers // Load PL011's baud divisor registers
r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd)); r.uartibrd().write_value(pac::regs::Uartibrd(baud_ibrd));
r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd)); r.uartfbrd().write_value(pac::regs::Uartfbrd(baud_fbrd));
let (pen, eps) = match config.parity { let (pen, eps) = match config.parity {
Parity::ParityNone => (false, false), Parity::ParityNone => (false, false),
@ -359,15 +375,9 @@ impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
w.set_rtsen(rts.is_some()); w.set_rtsen(rts.is_some());
}); });
} }
Self {
tx: UartTx::new(tx_dma),
rx: UartRx::new(rx_dma),
}
}
} }
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> { impl<'d, M: Mode> Uart<'d, M> {
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer) self.tx.blocking_write(buffer)
} }
@ -382,12 +392,12 @@ impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
/// Split the Uart into a transmitter and receiver, which is particuarly /// Split the Uart into a transmitter and receiver, which is particuarly
/// useful when having two tasks correlating to transmitting and receiving. /// useful when having two tasks correlating to transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T, M>, UartRx<'d, T, M>) { pub fn split(self) -> (UartTx<'d, M>, UartRx<'d, M>) {
(self.tx, self.rx) (self.tx, self.rx)
} }
} }
impl<'d, T: Instance> Uart<'d, T, Async> { impl<'d> Uart<'d, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> { pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await self.tx.write(buffer).await
} }
@ -400,10 +410,10 @@ impl<'d, T: Instance> Uart<'d, T, Async> {
mod eh02 { mod eh02 {
use super::*; use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, M> { impl<'d, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, M> {
type Error = Error; type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs(); let r = self.info.regs;
unsafe { unsafe {
if r.uartfr().read().rxfe() { if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock); return Err(nb::Error::WouldBlock);
@ -426,7 +436,7 @@ mod eh02 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> { impl<'d, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, M> {
type Error = Error; type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
@ -438,7 +448,7 @@ mod eh02 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, M> {
type Error = Error; type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
@ -446,7 +456,7 @@ mod eh02 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, M> {
type Error = Error; type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
@ -474,21 +484,21 @@ mod eh1 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_1::serial::ErrorType for Uart<'d, M> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartTx<'d, T, M> { impl<'d, M: Mode> embedded_hal_1::serial::ErrorType for UartTx<'d, M> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::ErrorType for UartRx<'d, T, M> { impl<'d, M: Mode> embedded_hal_1::serial::ErrorType for UartRx<'d, M> {
type Error = Error; type Error = Error;
} }
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for UartRx<'d, T, M> { impl<'d, M: Mode> embedded_hal_nb::serial::Read for UartRx<'d, M> {
fn read(&mut self) -> nb::Result<u8, Self::Error> { fn read(&mut self) -> nb::Result<u8, Self::Error> {
let r = T::regs(); let r = self.info.regs;
unsafe { unsafe {
let dr = r.uartdr().read(); let dr = r.uartdr().read();
@ -509,7 +519,7 @@ mod eh1 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for UartTx<'d, T, M> { impl<'d, M: Mode> embedded_hal_1::serial::Write for UartTx<'d, M> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer) self.blocking_write(buffer)
} }
@ -519,7 +529,7 @@ mod eh1 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for UartTx<'d, T, M> { impl<'d, M: Mode> embedded_hal_nb::serial::Write for UartTx<'d, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> { fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other) self.blocking_write(&[char]).map_err(nb::Error::Other)
} }
@ -529,13 +539,13 @@ mod eh1 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Read for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_nb::serial::Read for Uart<'d, M> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> { fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx) embedded_hal_02::serial::Read::read(&mut self.rx)
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_1::serial::Write for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_1::serial::Write for Uart<'d, M> {
fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { fn write(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer) self.blocking_write(buffer)
} }
@ -545,7 +555,7 @@ mod eh1 {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_nb::serial::Write for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_nb::serial::Write for Uart<'d, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> { fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other) self.blocking_write(&[char]).map_err(nb::Error::Other)
} }
@ -566,7 +576,7 @@ mod eha {
use super::*; use super::*;
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for UartTx<'d, T, M> { impl<'d, M: Mode> embedded_hal_async::serial::Write for UartTx<'d, M> {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
@ -580,7 +590,7 @@ mod eha {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for UartRx<'d, T, M> { impl<'d, M: Mode> embedded_hal_async::serial::Read for UartRx<'d, M> {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
@ -588,7 +598,7 @@ mod eha {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Write for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_async::serial::Write for Uart<'d, M> {
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
@ -602,7 +612,7 @@ mod eha {
} }
} }
impl<'d, T: Instance, M: Mode> embedded_hal_async::serial::Read for Uart<'d, T, M> { impl<'d, M: Mode> embedded_hal_async::serial::Read for Uart<'d, M> {
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
@ -611,29 +621,31 @@ mod eha {
} }
} }
#[cfg(feature = "nightly")]
mod buffered;
#[cfg(feature = "nightly")]
pub use buffered::*;
mod sealed { mod sealed {
use super::*; use super::*;
pub trait Mode {} pub trait Mode {}
pub trait Instance { pub trait Instance {
const TX_DREQ: u8;
const RX_DREQ: u8;
type Interrupt: crate::interrupt::Interrupt; type Interrupt: crate::interrupt::Interrupt;
fn info() -> &'static Info;
fn regs() -> pac::uart::Uart;
} }
pub trait TxPin<T: Instance> {} pub trait TxPin<T: Instance> {}
pub trait RxPin<T: Instance> {} pub trait RxPin<T: Instance> {}
pub trait CtsPin<T: Instance> {} pub trait CtsPin<T: Instance> {}
pub trait RtsPin<T: Instance> {} pub trait RtsPin<T: Instance> {}
/// Info about one concrete peripheral instance.
pub struct Info {
pub(crate) regs: pac::Uart,
pub(crate) tx_dreq: u8,
pub(crate) rx_dreq: u8,
pub(crate) irq: crate::pac::Interrupt,
pub(crate) state: &'static super::buffered::State,
} }
}
use sealed::Info;
pub trait Mode: sealed::Mode {} pub trait Mode: sealed::Mode {}
@ -655,16 +667,27 @@ pub trait Instance: sealed::Instance {}
macro_rules! impl_instance { macro_rules! impl_instance {
($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => { ($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl sealed::Instance for peripherals::$inst { impl sealed::Instance for peripherals::$inst {
const TX_DREQ: u8 = $tx_dreq;
const RX_DREQ: u8 = $rx_dreq;
type Interrupt = crate::interrupt::$irq; type Interrupt = crate::interrupt::$irq;
fn regs() -> pac::uart::Uart { fn info() -> &'static Info {
pac::$inst static STATE: buffered::State = buffered::State::new();
static INFO: Info = Info {
regs: crate::pac::$inst,
tx_dreq: $tx_dreq,
rx_dreq: $rx_dreq,
irq: crate::pac::Interrupt::$irq,
state: &STATE,
};
&INFO
} }
} }
impl Instance for peripherals::$inst {} impl Instance for peripherals::$inst {}
impl crate::interrupt::InterruptFunction for crate::interrupt::$irq {
fn on_interrupt() {
buffered::on_interrupt(<peripherals::$inst as sealed::Instance>::info())
}
}
}; };
} }

View File

@ -3,9 +3,11 @@
#![feature(type_alias_impl_trait)] #![feature(type_alias_impl_trait)]
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::uart; use embassy_rp::{register_interrupts, uart};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
register_interrupts!(Reg: UART0_IRQ);
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());

View File

@ -4,11 +4,13 @@
use defmt::{assert_eq, *}; use defmt::{assert_eq, *};
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::interrupt; use embassy_rp::register_interrupts;
use embassy_rp::uart::{BufferedUart, Config, State, Uart}; use embassy_rp::uart::{BufferedUart, Config};
use embedded_io::asynch::{Read, Write}; use embedded_io::asynch::{Read, Write};
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
register_interrupts!(Irqs: UART0_IRQ);
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
@ -16,26 +18,26 @@ async fn main(_spawner: Spawner) {
let (tx, rx, uart) = (p.PIN_0, p.PIN_1, p.UART0); let (tx, rx, uart) = (p.PIN_0, p.PIN_1, p.UART0);
let config = Config::default();
let uart = Uart::new_blocking(uart, tx, rx, config);
let irq = interrupt::take!(UART0_IRQ);
let tx_buf = &mut [0u8; 16]; let tx_buf = &mut [0u8; 16];
let rx_buf = &mut [0u8; 16]; let rx_buf = &mut [0u8; 16];
let mut state = State::new(); let config = Config::default();
let mut uart = BufferedUart::new(&mut state, uart, irq, tx_buf, rx_buf); let mut uart = BufferedUart::new(uart, Irqs, tx, rx, tx_buf, rx_buf, config);
// Make sure we send more bytes than fits in the FIFO, to test the actual // Make sure we send more bytes than fits in the FIFO, to test the actual
// bufferedUart. // bufferedUart.
let data = [ let data = [
1_u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 1_u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 30, 31,
];
let data = [
1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31,
]; ];
uart.write_all(&data).await.unwrap(); uart.write_all(&data).await.unwrap();
info!("Done writing"); info!("Done writing");
let mut buf = [0; 32]; let mut buf = [0; 31];
uart.read_exact(&mut buf).await.unwrap(); uart.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, data); assert_eq!(buf, data);