use std::marker::PhantomData; use std::sync::{Condvar, Mutex}; use super::{raw, Spawner}; /// Single-threaded std-based executor. pub struct Executor { inner: raw::Executor, not_send: PhantomData<*mut ()>, signaler: &'static Signaler, } impl Executor { /// Create a new Executor. pub fn new() -> Self { let signaler = &*Box::leak(Box::new(Signaler::new())); Self { inner: raw::Executor::new( |p| unsafe { let s = &*(p as *const () as *const Signaler); s.signal() }, signaler as *const _ as _, ), not_send: PhantomData, signaler, } } /// Run the executor. /// /// The `init` closure is called with a [`Spawner`] that spawns tasks on /// this executor. Use it to spawn the initial task(s). After `init` returns, /// the executor starts running the tasks. /// /// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`), /// for example by passing it as an argument to the initial tasks. /// /// This function requires `&'static mut self`. This means you have to store the /// Executor instance in a place where it'll live forever and grants you mutable /// access. There's a few ways to do this: /// /// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe) /// - a `static mut` (unsafe) /// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe) /// /// This function never returns. pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! { init(self.inner.spawner()); loop { unsafe { self.inner.poll() }; self.signaler.wait() } } } struct Signaler { mutex: Mutex, condvar: Condvar, } impl Signaler { fn new() -> Self { Self { mutex: Mutex::new(false), condvar: Condvar::new(), } } fn wait(&self) { let mut signaled = self.mutex.lock().unwrap(); while !*signaled { signaled = self.condvar.wait(signaled).unwrap(); } *signaled = false; } fn signal(&self) { let mut signaled = self.mutex.lock().unwrap(); *signaled = true; self.condvar.notify_one(); } }