use stm32_metapac::rtc::vals::{Init, Osel, Pol}; use super::{sealed, RtcClockSource, RtcConfig}; use crate::pac::rtc::Rtc; use crate::peripherals::RTC; use crate::rtc::sealed::Instance; impl super::Rtc { fn unlock_registers() { #[cfg(any(rtc_v2f2, rtc_v2f3, rtc_v2l1))] let cr = crate::pac::PWR.cr(); #[cfg(any(rtc_v2f4, rtc_v2f7, rtc_v2h7, rtc_v2l4, rtc_v2wb))] let cr = crate::pac::PWR.cr1(); // TODO: Missing from PAC for l0 and f0? #[cfg(not(any(rtc_v2f0, rtc_v2l0)))] { if !cr.read().dbp() { cr.modify(|w| w.set_dbp(true)); while !cr.read().dbp() {} } } } #[allow(dead_code)] #[cfg(all(feature = "time", stm32wb))] // start the wakeup alarm with the given duration pub(crate) fn start_wakeup_alarm(duration: embassy_time::Duration) { use embassy_time::TICK_HZ; use stm32_metapac::rtc::vals::Wucksel; use crate::interrupt::typelevel::Interrupt; use crate::rcc::get_freqs; let rtc_hz = unsafe { get_freqs() }.rtc.unwrap().0 as u64; // Choose the lowest prescaler available #[cfg(stm32wb)] let rtc_hz = rtc_hz / 2; let rtc_ticks = duration.as_ticks() * rtc_hz / TICK_HZ; let rtc_ticks = if rtc_ticks > u16::MAX as u64 { u16::MAX } else { rtc_ticks as u16 }; while !RTC::regs().isr().read().wutf() {} RTC::regs().isr().modify(|w| w.set_wutf(false)); RTC::regs().wutr().modify(|w| w.set_wut(rtc_ticks)); crate::interrupt::typelevel::RTC_WKUP::unpend(); unsafe { crate::interrupt::typelevel::RTC_WKUP::enable() }; RTC::regs().cr().modify(|w| { // Choose the lowest prescaler available #[cfg(stm32wb)] w.set_wucksel(Wucksel::DIV2); w.set_wutie(true); w.set_wute(true); }); } #[allow(dead_code)] #[cfg(all(feature = "time", stm32wb))] // stop the wakeup alarm and return the time remaining pub(crate) fn stop_wakeup_alarm() -> embassy_time::Duration { use embassy_time::{Duration, TICK_HZ}; use crate::interrupt::typelevel::Interrupt; use crate::rcc::get_freqs; crate::interrupt::typelevel::RTC_WKUP::disable(); RTC::regs().cr().modify(|w| { w.set_wute(false); }); let rtc_hz = unsafe { get_freqs() }.rtc.unwrap().0 as u64; // Choose the lowest prescaler available #[cfg(stm32wb)] let rtc_hz = rtc_hz / 2; let rtc_ticks = RTC::regs().wutr().read().wut(); Duration::from_ticks(rtc_ticks as u64 * TICK_HZ / rtc_hz) } #[allow(dead_code)] pub(crate) fn set_clock_source(clock_source: RtcClockSource) { #[cfg(not(rtc_v2wb))] use stm32_metapac::rcc::vals::Rtcsel; #[cfg(not(any(rtc_v2l0, rtc_v2l1)))] let cr = crate::pac::RCC.bdcr(); #[cfg(any(rtc_v2l0, rtc_v2l1))] let cr = crate::pac::RCC.csr(); Self::unlock_registers(); cr.modify(|w| { // Select RTC source #[cfg(not(rtc_v2wb))] w.set_rtcsel(Rtcsel::from_bits(clock_source as u8)); #[cfg(rtc_v2wb)] w.set_rtcsel(clock_source as u8); }); } pub(super) fn enable() { #[cfg(not(any(rtc_v2l0, rtc_v2l1)))] let reg = crate::pac::RCC.bdcr().read(); #[cfg(any(rtc_v2l0, rtc_v2l1))] let reg = crate::pac::RCC.csr().read(); #[cfg(any(rtc_v2h7, rtc_v2l4, rtc_v2wb))] assert!(!reg.lsecsson(), "RTC is not compatible with LSE CSS, yet."); if !reg.rtcen() { Self::unlock_registers(); #[cfg(not(any(rtc_v2l0, rtc_v2l1, rtc_v2f2)))] crate::pac::RCC.bdcr().modify(|w| w.set_bdrst(true)); #[cfg(not(any(rtc_v2l0, rtc_v2l1)))] let cr = crate::pac::RCC.bdcr(); #[cfg(any(rtc_v2l0, rtc_v2l1))] let cr = crate::pac::RCC.csr(); cr.modify(|w| { // Reset #[cfg(not(any(rtc_v2l0, rtc_v2l1)))] w.set_bdrst(false); w.set_rtcen(true); w.set_rtcsel(reg.rtcsel()); // Restore bcdr #[cfg(any(rtc_v2l4, rtc_v2wb))] w.set_lscosel(reg.lscosel()); #[cfg(any(rtc_v2l4, rtc_v2wb))] w.set_lscoen(reg.lscoen()); w.set_lseon(reg.lseon()); #[cfg(any(rtc_v2f0, rtc_v2f7, rtc_v2h7, rtc_v2l4, rtc_v2wb))] w.set_lsedrv(reg.lsedrv()); w.set_lsebyp(reg.lsebyp()); }); } } /// Applies the RTC config /// It this changes the RTC clock source the time will be reset pub(super) fn configure(&mut self, rtc_config: RtcConfig) { self.write(true, |rtc| { rtc.cr().modify(|w| { #[cfg(rtc_v2f2)] w.set_fmt(false); #[cfg(not(rtc_v2f2))] w.set_fmt(stm32_metapac::rtc::vals::Fmt::TWENTY_FOUR_HOUR); w.set_osel(Osel::DISABLED); w.set_pol(Pol::HIGH); }); rtc.prer().modify(|w| { w.set_prediv_s(rtc_config.sync_prescaler); w.set_prediv_a(rtc_config.async_prescaler); }); }); } /// Calibrate the clock drift. /// /// `clock_drift` can be adjusted from -487.1 ppm to 488.5 ppm and is clamped to this range. /// /// ### Note /// /// To perform a calibration when `async_prescaler` is less then 3, `sync_prescaler` /// has to be reduced accordingly (see RM0351 Rev 9, sec 38.3.12). #[cfg(not(rtc_v2f2))] pub fn calibrate(&mut self, mut clock_drift: f32, period: super::RtcCalibrationCyclePeriod) { const RTC_CALR_MIN_PPM: f32 = -487.1; const RTC_CALR_MAX_PPM: f32 = 488.5; const RTC_CALR_RESOLUTION_PPM: f32 = 0.9537; if clock_drift < RTC_CALR_MIN_PPM { clock_drift = RTC_CALR_MIN_PPM; } else if clock_drift > RTC_CALR_MAX_PPM { clock_drift = RTC_CALR_MAX_PPM; } clock_drift = clock_drift / RTC_CALR_RESOLUTION_PPM; self.write(false, |rtc| { rtc.calr().write(|w| { match period { super::RtcCalibrationCyclePeriod::Seconds8 => { w.set_calw8(stm32_metapac::rtc::vals::Calw8::EIGHT_SECOND); } super::RtcCalibrationCyclePeriod::Seconds16 => { w.set_calw16(stm32_metapac::rtc::vals::Calw16::SIXTEEN_SECOND); } super::RtcCalibrationCyclePeriod::Seconds32 => { // Set neither `calw8` nor `calw16` to use 32 seconds } } // Extra pulses during calibration cycle period: CALP * 512 - CALM // // CALP sets whether pulses are added or omitted. // // CALM contains how many pulses (out of 512) are masked in a // given calibration cycle period. if clock_drift > 0.0 { // Maximum (about 512.2) rounds to 512. clock_drift += 0.5; // When the offset is positive (0 to 512), the opposite of // the offset (512 - offset) is masked, i.e. for the // maximum offset (512), 0 pulses are masked. w.set_calp(stm32_metapac::rtc::vals::Calp::INCREASEFREQ); w.set_calm(512 - clock_drift as u16); } else { // Minimum (about -510.7) rounds to -511. clock_drift -= 0.5; // When the offset is negative or zero (-511 to 0), // the absolute offset is masked, i.e. for the minimum // offset (-511), 511 pulses are masked. w.set_calp(stm32_metapac::rtc::vals::Calp::NOCHANGE); w.set_calm((clock_drift * -1.0) as u16); } }); }) } pub(super) fn write(&mut self, init_mode: bool, f: F) -> R where F: FnOnce(&crate::pac::rtc::Rtc) -> R, { let r = RTC::regs(); // Disable write protection. // This is safe, as we're only writin the correct and expected values. r.wpr().write(|w| w.set_key(0xca)); r.wpr().write(|w| w.set_key(0x53)); // true if initf bit indicates RTC peripheral is in init mode if init_mode && !r.isr().read().initf() { // to update calendar date/time, time format, and prescaler configuration, RTC must be in init mode r.isr().modify(|w| w.set_init(Init::INITMODE)); // wait till init state entered // ~2 RTCCLK cycles while !r.isr().read().initf() {} } let result = f(&r); if init_mode { r.isr().modify(|w| w.set_init(Init::FREERUNNINGMODE)); // Exits init mode } // Re-enable write protection. // This is safe, as the field accepts the full range of 8-bit values. r.wpr().write(|w| w.set_key(0xff)); result } } impl sealed::Instance for crate::peripherals::RTC { const BACKUP_REGISTER_COUNT: usize = 20; fn enable_peripheral_clk() { #[cfg(any(rtc_v2l4, rtc_v2wb))] { // enable peripheral clock for communication crate::pac::RCC.apb1enr1().modify(|w| w.set_rtcapben(true)); // read to allow the pwr clock to enable crate::pac::PWR.cr1().read(); } #[cfg(any(rtc_v2f2))] { crate::pac::RCC.apb1enr().modify(|w| w.set_pwren(true)); crate::pac::PWR.cr().read(); } } fn read_backup_register(rtc: &Rtc, register: usize) -> Option { if register < Self::BACKUP_REGISTER_COUNT { Some(rtc.bkpr(register).read().bkp()) } else { None } } fn write_backup_register(rtc: &Rtc, register: usize, value: u32) { if register < Self::BACKUP_REGISTER_COUNT { rtc.bkpr(register).write(|w| w.set_bkp(value)); } } }