use core::convert::TryFrom; use super::{set_freqs, Clocks}; use crate::pac::flash::vals::Latency; use crate::pac::rcc::vals::*; use crate::pac::{FLASH, RCC}; use crate::time::Hertz; /// HSI speed pub const HSI_FREQ: Hertz = Hertz(8_000_000); /// LSI speed pub const LSI_FREQ: Hertz = Hertz(40_000); /// Configuration of the clocks /// #[non_exhaustive] #[derive(Default)] pub struct Config { pub hse: Option, pub sys_ck: Option, pub hclk: Option, pub pclk1: Option, pub pclk2: Option, pub adcclk: Option, } pub(crate) unsafe fn init(config: Config) { let pllsrcclk = config.hse.map(|hse| hse.0).unwrap_or(HSI_FREQ.0 / 2); let sysclk = config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk); let pllmul = sysclk / pllsrcclk; let (pllmul_bits, real_sysclk) = if pllmul == 1 { (None, config.hse.map(|hse| hse.0).unwrap_or(HSI_FREQ.0)) } else { let pllmul = core::cmp::min(core::cmp::max(pllmul, 1), 16); (Some(pllmul as u8 - 2), pllsrcclk * pllmul) }; assert!(real_sysclk <= 72_000_000); let hpre_bits = config .hclk .map(|hclk| match real_sysclk / hclk.0 { 0 => unreachable!(), 1 => 0b0111, 2 => 0b1000, 3..=5 => 0b1001, 6..=11 => 0b1010, 12..=39 => 0b1011, 40..=95 => 0b1100, 96..=191 => 0b1101, 192..=383 => 0b1110, _ => 0b1111, }) .unwrap_or(0b0111); let hclk = if hpre_bits >= 0b1100 { real_sysclk / (1 << (hpre_bits - 0b0110)) } else { real_sysclk / (1 << (hpre_bits - 0b0111)) }; assert!(hclk <= 72_000_000); let ppre1_bits = config .pclk1 .map(|pclk1| match hclk / pclk1.0 { 0 => unreachable!(), 1 => 0b011, 2 => 0b100, 3..=5 => 0b101, 6..=11 => 0b110, _ => 0b111, }) .unwrap_or(0b011); let ppre1 = 1 << (ppre1_bits - 0b011); let pclk1 = hclk / u32::try_from(ppre1).unwrap(); let timer_mul1 = if ppre1 == 1 { 1 } else { 2 }; assert!(pclk1 <= 36_000_000); let ppre2_bits = config .pclk2 .map(|pclk2| match hclk / pclk2.0 { 0 => unreachable!(), 1 => 0b011, 2 => 0b100, 3..=5 => 0b101, 6..=11 => 0b110, _ => 0b111, }) .unwrap_or(0b011); let ppre2 = 1 << (ppre2_bits - 0b011); let pclk2 = hclk / u32::try_from(ppre2).unwrap(); let timer_mul2 = if ppre2 == 1 { 1 } else { 2 }; assert!(pclk2 <= 72_000_000); // Only needed for stm32f103? FLASH.acr().write(|w| { w.set_latency(if real_sysclk <= 24_000_000 { Latency(0b000) } else if real_sysclk <= 48_000_000 { Latency(0b001) } else { Latency(0b010) }); }); // the USB clock is only valid if an external crystal is used, the PLL is enabled, and the // PLL output frequency is a supported one. // usbpre == false: divide clock by 1.5, otherwise no division #[cfg(not(rcc_f100))] let (usbpre, _usbclk_valid) = match (config.hse, pllmul_bits, real_sysclk) { (Some(_), Some(_), 72_000_000) => (false, true), (Some(_), Some(_), 48_000_000) => (true, true), _ => (true, false), }; let apre_bits: u8 = config .adcclk .map(|adcclk| match pclk2 / adcclk.0 { 0..=2 => 0b00, 3..=4 => 0b01, 5..=7 => 0b10, _ => 0b11, }) .unwrap_or(0b11); let apre = (apre_bits + 1) << 1; let adcclk = pclk2 / unwrap!(u32::try_from(apre)); assert!(adcclk <= 14_000_000); if config.hse.is_some() { // enable HSE and wait for it to be ready RCC.cr().modify(|w| w.set_hseon(true)); while !RCC.cr().read().hserdy() {} } if let Some(pllmul_bits) = pllmul_bits { // enable PLL and wait for it to be ready RCC.cfgr().modify(|w| { w.set_pllmul(Pllmul(pllmul_bits)); w.set_pllsrc(Pllsrc(config.hse.is_some() as u8)); }); RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} } // Only needed for stm32f103? RCC.cfgr().modify(|w| { w.set_adcpre(Adcpre(apre_bits)); w.set_ppre2(Ppre1(ppre2_bits)); w.set_ppre1(Ppre1(ppre1_bits)); w.set_hpre(Hpre(hpre_bits)); #[cfg(not(rcc_f100))] w.set_usbpre(Usbpre(usbpre as u8)); w.set_sw(Sw(if pllmul_bits.is_some() { // PLL 0b10 } else if config.hse.is_some() { // HSE 0b1 } else { // HSI 0b0 })); }); set_freqs(Clocks { sys: Hertz(real_sysclk), apb1: Hertz(pclk1), apb2: Hertz(pclk2), apb1_tim: Hertz(pclk1 * timer_mul1), apb2_tim: Hertz(pclk2 * timer_mul2), ahb1: Hertz(hclk), adc: Hertz(adcclk), }); }