use core::future; use core::marker::PhantomData; use core::task::Poll; use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use pac::i2c; use crate::gpio::sealed::Pin; use crate::gpio::AnyPin; use crate::interrupt::typelevel::{Binding, Interrupt}; use crate::{interrupt, pac, peripherals, Peripheral}; /// I2C error abort reason #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum AbortReason { /// A bus operation was not acknowledged, e.g. due to the addressed device /// not being available on the bus or the device not being ready to process /// requests at the moment NoAcknowledge, /// The arbitration was lost, e.g. electrical problems with the clock signal ArbitrationLoss, /// Transmit ended with data still in fifo TxNotEmpty(u16), Other(u32), } /// I2C error #[derive(Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { /// I2C abort with error Abort(AbortReason), /// User passed in a read buffer that was 0 length InvalidReadBufferLength, /// User passed in a write buffer that was 0 length InvalidWriteBufferLength, /// Target i2c address is out of range AddressOutOfRange(u16), /// Target i2c address is reserved AddressReserved(u16), } #[non_exhaustive] #[derive(Copy, Clone)] pub struct Config { pub frequency: u32, } impl Default for Config { fn default() -> Self { Self { frequency: 100_000 } } } pub const FIFO_SIZE: u8 = 16; pub struct I2c<'d, T: Instance, M: Mode> { phantom: PhantomData<(&'d mut T, M)>, } impl<'d, T: Instance> I2c<'d, T, Blocking> { pub fn new_blocking( peri: impl Peripheral

+ 'd, scl: impl Peripheral

> + 'd, sda: impl Peripheral

> + 'd, config: Config, ) -> Self { into_ref!(scl, sda); Self::new_inner(peri, scl.map_into(), sda.map_into(), config) } } impl<'d, T: Instance> I2c<'d, T, Async> { pub fn new_async( peri: impl Peripheral

+ 'd, scl: impl Peripheral

> + 'd, sda: impl Peripheral

> + 'd, _irq: impl Binding>, config: Config, ) -> Self { into_ref!(scl, sda); let i2c = Self::new_inner(peri, scl.map_into(), sda.map_into(), config); let r = T::regs(); // mask everything initially r.ic_intr_mask().write_value(i2c::regs::IcIntrMask(0)); T::Interrupt::unpend(); unsafe { T::Interrupt::enable() }; i2c } /// Calls `f` to check if we are ready or not. /// If not, `g` is called once the waker is set (to eg enable the required interrupts). async fn wait_on(&mut self, mut f: F, mut g: G) -> U where F: FnMut(&mut Self) -> Poll, G: FnMut(&mut Self), { future::poll_fn(|cx| { let r = f(self); if r.is_pending() { T::waker().register(cx.waker()); g(self); } r }) .await } async fn read_async_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { if buffer.is_empty() { return Err(Error::InvalidReadBufferLength); } let p = T::regs(); let mut remaining = buffer.len(); let mut remaining_queue = buffer.len(); let mut abort_reason = Ok(()); while remaining > 0 { // Waggle SCK - basically the same as write let tx_fifo_space = Self::tx_fifo_capacity(); let mut batch = 0; debug_assert!(remaining_queue > 0); for _ in 0..remaining_queue.min(tx_fifo_space as usize) { remaining_queue -= 1; let last = remaining_queue == 0; batch += 1; p.ic_data_cmd().write(|w| { w.set_restart(restart && remaining_queue == buffer.len() - 1); w.set_stop(last && send_stop); w.set_cmd(true); }); } // We've either run out of txfifo or just plain finished setting up // the clocks for the message - either way we need to wait for rx // data. debug_assert!(batch > 0); let res = self .wait_on( |me| { let rxfifo = Self::rx_fifo_len(); if let Err(abort_reason) = me.read_and_clear_abort_reason() { Poll::Ready(Err(abort_reason)) } else if rxfifo >= batch { Poll::Ready(Ok(rxfifo)) } else { Poll::Pending } }, |_me| { // Set the read threshold to the number of bytes we're // expecting so we don't get spurious interrupts. p.ic_rx_tl().write(|w| w.set_rx_tl(batch - 1)); p.ic_intr_mask().modify(|w| { w.set_m_rx_full(true); w.set_m_tx_abrt(true); }); }, ) .await; match res { Err(reason) => { abort_reason = Err(reason); break; } Ok(rxfifo) => { // Fetch things from rx fifo. We're assuming we're the only // rxfifo reader, so nothing else can take things from it. let rxbytes = (rxfifo as usize).min(remaining); let received = buffer.len() - remaining; for b in &mut buffer[received..received + rxbytes] { *b = p.ic_data_cmd().read().dat(); } remaining -= rxbytes; } }; } self.wait_stop_det(abort_reason, send_stop).await } async fn write_async_internal( &mut self, bytes: impl IntoIterator, send_stop: bool, ) -> Result<(), Error> { let p = T::regs(); let mut bytes = bytes.into_iter().peekable(); let res = 'xmit: loop { let tx_fifo_space = Self::tx_fifo_capacity(); for _ in 0..tx_fifo_space { if let Some(byte) = bytes.next() { let last = bytes.peek().is_none(); p.ic_data_cmd().write(|w| { w.set_stop(last && send_stop); w.set_cmd(false); w.set_dat(byte); }); } else { break 'xmit Ok(()); } } let res = self .wait_on( |me| { if let abort_reason @ Err(_) = me.read_and_clear_abort_reason() { Poll::Ready(abort_reason) } else if !Self::tx_fifo_full() { // resume if there's any space free in the tx fifo Poll::Ready(Ok(())) } else { Poll::Pending } }, |_me| { // Set tx "free" threshold a little high so that we get // woken before the fifo completely drains to minimize // transfer stalls. p.ic_tx_tl().write(|w| w.set_tx_tl(1)); p.ic_intr_mask().modify(|w| { w.set_m_tx_empty(true); w.set_m_tx_abrt(true); }) }, ) .await; if res.is_err() { break res; } }; self.wait_stop_det(res, send_stop).await } /// Helper to wait for a stop bit, for both tx and rx. If we had an abort, /// then we'll get a hardware-generated stop, otherwise wait for a stop if /// we're expecting it. /// /// Also handles an abort which arises while processing the tx fifo. async fn wait_stop_det(&mut self, had_abort: Result<(), Error>, do_stop: bool) -> Result<(), Error> { if had_abort.is_err() || do_stop { let p = T::regs(); let had_abort2 = self .wait_on( |me| { // We could see an abort while processing fifo backlog, // so handle it here. let abort = me.read_and_clear_abort_reason(); if had_abort.is_ok() && abort.is_err() { Poll::Ready(abort) } else if p.ic_raw_intr_stat().read().stop_det() { Poll::Ready(Ok(())) } else { Poll::Pending } }, |_me| { p.ic_intr_mask().modify(|w| { w.set_m_stop_det(true); w.set_m_tx_abrt(true); }); }, ) .await; p.ic_clr_stop_det().read(); had_abort.and(had_abort2) } else { had_abort } } pub async fn read_async(&mut self, addr: u16, buffer: &mut [u8]) -> Result<(), Error> { Self::setup(addr)?; self.read_async_internal(buffer, false, true).await } pub async fn write_async(&mut self, addr: u16, bytes: impl IntoIterator) -> Result<(), Error> { Self::setup(addr)?; self.write_async_internal(bytes, true).await } } pub struct InterruptHandler { _uart: PhantomData, } impl interrupt::typelevel::Handler for InterruptHandler { // Mask interrupts and wake any task waiting for this interrupt unsafe fn on_interrupt() { let i2c = T::regs(); i2c.ic_intr_mask().write_value(pac::i2c::regs::IcIntrMask::default()); T::waker().wake(); } } impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> { fn new_inner( _peri: impl Peripheral

+ 'd, scl: PeripheralRef<'d, AnyPin>, sda: PeripheralRef<'d, AnyPin>, config: Config, ) -> Self { into_ref!(_peri); assert!(config.frequency <= 1_000_000); assert!(config.frequency > 0); let p = T::regs(); let reset = T::reset(); crate::reset::reset(reset); crate::reset::unreset_wait(reset); p.ic_enable().write(|w| w.set_enable(false)); // Select controller mode & speed p.ic_con().modify(|w| { // Always use "fast" mode (<= 400 kHz, works fine for standard // mode too) w.set_speed(i2c::vals::Speed::FAST); w.set_master_mode(true); w.set_ic_slave_disable(true); w.set_ic_restart_en(true); w.set_tx_empty_ctrl(true); }); // Set FIFO watermarks to 1 to make things simpler. This is encoded // by a register value of 0. p.ic_tx_tl().write(|w| w.set_tx_tl(0)); p.ic_rx_tl().write(|w| w.set_rx_tl(0)); // Configure SCL & SDA pins scl.gpio().ctrl().write(|w| w.set_funcsel(3)); sda.gpio().ctrl().write(|w| w.set_funcsel(3)); scl.pad_ctrl().write(|w| { w.set_schmitt(true); w.set_ie(true); w.set_od(false); w.set_pue(true); w.set_pde(false); }); sda.pad_ctrl().write(|w| { w.set_schmitt(true); w.set_ie(true); w.set_od(false); w.set_pue(true); w.set_pde(false); }); // Configure baudrate // There are some subtleties to I2C timing which we are completely // ignoring here See: // https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69 let clk_base = crate::clocks::clk_peri_freq(); let period = (clk_base + config.frequency / 2) / config.frequency; let lcnt = period * 3 / 5; // spend 3/5 (60%) of the period low let hcnt = period - lcnt; // and 2/5 (40%) of the period high // Check for out-of-range divisors: assert!(hcnt <= 0xffff); assert!(lcnt <= 0xffff); assert!(hcnt >= 8); assert!(lcnt >= 8); // Per I2C-bus specification a device in standard or fast mode must // internally provide a hold time of at least 300ns for the SDA // signal to bridge the undefined region of the falling edge of SCL. // A smaller hold time of 120ns is used for fast mode plus. let sda_tx_hold_count = if config.frequency < 1_000_000 { // sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s / // 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't // fit in uint. Add 1 to avoid division truncation. ((clk_base * 3) / 10_000_000) + 1 } else { // fast mode plus requires a clk_base > 32MHz assert!(clk_base >= 32_000_000); // sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s / // 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't // fit in uint. Add 1 to avoid division truncation. ((clk_base * 3) / 25_000_000) + 1 }; assert!(sda_tx_hold_count <= lcnt - 2); p.ic_fs_scl_hcnt().write(|w| w.set_ic_fs_scl_hcnt(hcnt as u16)); p.ic_fs_scl_lcnt().write(|w| w.set_ic_fs_scl_lcnt(lcnt as u16)); p.ic_fs_spklen() .write(|w| w.set_ic_fs_spklen(if lcnt < 16 { 1 } else { (lcnt / 16) as u8 })); p.ic_sda_hold() .modify(|w| w.set_ic_sda_tx_hold(sda_tx_hold_count as u16)); // Enable I2C block p.ic_enable().write(|w| w.set_enable(true)); Self { phantom: PhantomData } } fn setup(addr: u16) -> Result<(), Error> { if addr >= 0x80 { return Err(Error::AddressOutOfRange(addr)); } if i2c_reserved_addr(addr) { return Err(Error::AddressReserved(addr)); } let p = T::regs(); p.ic_enable().write(|w| w.set_enable(false)); p.ic_tar().write(|w| w.set_ic_tar(addr)); p.ic_enable().write(|w| w.set_enable(true)); Ok(()) } #[inline] fn tx_fifo_full() -> bool { Self::tx_fifo_capacity() == 0 } #[inline] fn tx_fifo_capacity() -> u8 { let p = T::regs(); FIFO_SIZE - p.ic_txflr().read().txflr() } #[inline] fn rx_fifo_len() -> u8 { let p = T::regs(); p.ic_rxflr().read().rxflr() } fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> { let p = T::regs(); let abort_reason = p.ic_tx_abrt_source().read(); if abort_reason.0 != 0 { // Note clearing the abort flag also clears the reason, and this // instance of flag is clear-on-read! Note also the // IC_CLR_TX_ABRT register always reads as 0. p.ic_clr_tx_abrt().read(); let reason = if abort_reason.abrt_7b_addr_noack() | abort_reason.abrt_10addr1_noack() | abort_reason.abrt_10addr2_noack() { AbortReason::NoAcknowledge } else if abort_reason.arb_lost() { AbortReason::ArbitrationLoss } else { AbortReason::Other(abort_reason.0) }; Err(Error::Abort(reason)) } else { Ok(()) } } fn read_blocking_internal(&mut self, read: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { if read.is_empty() { return Err(Error::InvalidReadBufferLength); } let p = T::regs(); let lastindex = read.len() - 1; for (i, byte) in read.iter_mut().enumerate() { let first = i == 0; let last = i == lastindex; // wait until there is space in the FIFO to write the next byte while Self::tx_fifo_full() {} p.ic_data_cmd().write(|w| { w.set_restart(restart && first); w.set_stop(send_stop && last); w.set_cmd(true); }); while Self::rx_fifo_len() == 0 { self.read_and_clear_abort_reason()?; } *byte = p.ic_data_cmd().read().dat(); } Ok(()) } fn write_blocking_internal(&mut self, write: &[u8], send_stop: bool) -> Result<(), Error> { if write.is_empty() { return Err(Error::InvalidWriteBufferLength); } let p = T::regs(); for (i, byte) in write.iter().enumerate() { let last = i == write.len() - 1; p.ic_data_cmd().write(|w| { w.set_stop(send_stop && last); w.set_dat(*byte); }); // Wait until the transmission of the address/data from the // internal shift register has completed. For this to function // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The // TX_EMPTY_CTRL flag was set in i2c_init. while !p.ic_raw_intr_stat().read().tx_empty() {} let abort_reason = self.read_and_clear_abort_reason(); if abort_reason.is_err() || (send_stop && last) { // If the transaction was aborted or if it completed // successfully wait until the STOP condition has occurred. while !p.ic_raw_intr_stat().read().stop_det() {} p.ic_clr_stop_det().read().clr_stop_det(); } // Note the hardware issues a STOP automatically on an abort // condition. Note also the hardware clears RX FIFO as well as // TX on abort, ecause we set hwparam // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0. abort_reason?; } Ok(()) } // ========================= // Blocking public API // ========================= pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> { Self::setup(address.into())?; self.read_blocking_internal(read, true, true) // Automatic Stop } pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> { Self::setup(address.into())?; self.write_blocking_internal(write, true) } pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> { Self::setup(address.into())?; self.write_blocking_internal(write, false)?; self.read_blocking_internal(read, true, true) // Automatic Stop } } mod eh02 { use super::*; impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> { type Error = Error; fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { self.blocking_read(address, buffer) } } impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> { type Error = Error; fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> { self.blocking_write(address, bytes) } } impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> { type Error = Error; fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { self.blocking_write_read(address, bytes, buffer) } } impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Transactional for I2c<'d, T, M> { type Error = Error; fn exec( &mut self, address: u8, operations: &mut [embedded_hal_02::blocking::i2c::Operation<'_>], ) -> Result<(), Self::Error> { Self::setup(address.into())?; for i in 0..operations.len() { let last = i == operations.len() - 1; match &mut operations[i] { embedded_hal_02::blocking::i2c::Operation::Read(buf) => { self.read_blocking_internal(buf, false, last)? } embedded_hal_02::blocking::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?, } } Ok(()) } } } #[cfg(feature = "unstable-traits")] mod eh1 { use super::*; impl embedded_hal_1::i2c::Error for Error { fn kind(&self) -> embedded_hal_1::i2c::ErrorKind { match *self { Self::Abort(AbortReason::ArbitrationLoss) => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss, Self::Abort(AbortReason::NoAcknowledge) => { embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Address) } Self::Abort(AbortReason::TxNotEmpty(_)) => embedded_hal_1::i2c::ErrorKind::Other, Self::Abort(AbortReason::Other(_)) => embedded_hal_1::i2c::ErrorKind::Other, Self::InvalidReadBufferLength => embedded_hal_1::i2c::ErrorKind::Other, Self::InvalidWriteBufferLength => embedded_hal_1::i2c::ErrorKind::Other, Self::AddressOutOfRange(_) => embedded_hal_1::i2c::ErrorKind::Other, Self::AddressReserved(_) => embedded_hal_1::i2c::ErrorKind::Other, } } } impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, T, M> { type Error = Error; } impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> { fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> { self.blocking_read(address, read) } fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> { self.blocking_write(address, write) } fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { self.blocking_write_read(address, write, read) } fn transaction( &mut self, address: u8, operations: &mut [embedded_hal_1::i2c::Operation<'_>], ) -> Result<(), Self::Error> { Self::setup(address.into())?; for i in 0..operations.len() { let last = i == operations.len() - 1; match &mut operations[i] { embedded_hal_1::i2c::Operation::Read(buf) => self.read_blocking_internal(buf, false, last)?, embedded_hal_1::i2c::Operation::Write(buf) => self.write_blocking_internal(buf, last)?, } } Ok(()) } } } #[cfg(all(feature = "unstable-traits", feature = "nightly"))] mod nightly { use embedded_hal_1::i2c::Operation; use embedded_hal_async::i2c::AddressMode; use super::*; impl<'d, A, T> embedded_hal_async::i2c::I2c for I2c<'d, T, Async> where A: AddressMode + Into + 'static, T: Instance + 'd, { async fn read(&mut self, address: A, read: &mut [u8]) -> Result<(), Self::Error> { let addr: u16 = address.into(); Self::setup(addr)?; self.read_async_internal(read, false, true).await } async fn write(&mut self, address: A, write: &[u8]) -> Result<(), Self::Error> { let addr: u16 = address.into(); Self::setup(addr)?; self.write_async_internal(write.iter().copied(), true).await } async fn write_read(&mut self, address: A, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { let addr: u16 = address.into(); Self::setup(addr)?; self.write_async_internal(write.iter().cloned(), false).await?; self.read_async_internal(read, false, true).await } async fn transaction(&mut self, address: A, operations: &mut [Operation<'_>]) -> Result<(), Self::Error> { let addr: u16 = address.into(); if operations.len() > 0 { Self::setup(addr)?; } let mut iterator = operations.iter_mut(); while let Some(op) = iterator.next() { let last = iterator.len() == 0; match op { Operation::Read(buffer) => { self.read_async_internal(buffer, false, last).await?; } Operation::Write(buffer) => { self.write_async_internal(buffer.into_iter().cloned(), last).await?; } } } Ok(()) } } } pub fn i2c_reserved_addr(addr: u16) -> bool { ((addr & 0x78) == 0 || (addr & 0x78) == 0x78) && addr != 0 } mod sealed { use embassy_sync::waitqueue::AtomicWaker; use crate::interrupt; pub trait Instance { const TX_DREQ: u8; const RX_DREQ: u8; type Interrupt: interrupt::typelevel::Interrupt; fn regs() -> crate::pac::i2c::I2c; fn reset() -> crate::pac::resets::regs::Peripherals; fn waker() -> &'static AtomicWaker; } pub trait Mode {} pub trait SdaPin {} pub trait SclPin {} } pub trait Mode: sealed::Mode {} macro_rules! impl_mode { ($name:ident) => { impl sealed::Mode for $name {} impl Mode for $name {} }; } pub struct Blocking; pub struct Async; impl_mode!(Blocking); impl_mode!(Async); pub trait Instance: sealed::Instance {} macro_rules! impl_instance { ($type:ident, $irq:ident, $reset:ident, $tx_dreq:expr, $rx_dreq:expr) => { impl sealed::Instance for peripherals::$type { const TX_DREQ: u8 = $tx_dreq; const RX_DREQ: u8 = $rx_dreq; type Interrupt = crate::interrupt::typelevel::$irq; #[inline] fn regs() -> pac::i2c::I2c { pac::$type } #[inline] fn reset() -> pac::resets::regs::Peripherals { let mut ret = pac::resets::regs::Peripherals::default(); ret.$reset(true); ret } #[inline] fn waker() -> &'static AtomicWaker { static WAKER: AtomicWaker = AtomicWaker::new(); &WAKER } } impl Instance for peripherals::$type {} }; } impl_instance!(I2C0, I2C0_IRQ, set_i2c0, 32, 33); impl_instance!(I2C1, I2C1_IRQ, set_i2c1, 34, 35); pub trait SdaPin: sealed::SdaPin + crate::gpio::Pin {} pub trait SclPin: sealed::SclPin + crate::gpio::Pin {} macro_rules! impl_pin { ($pin:ident, $instance:ident, $function:ident) => { impl sealed::$function for peripherals::$pin {} impl $function for peripherals::$pin {} }; } impl_pin!(PIN_0, I2C0, SdaPin); impl_pin!(PIN_1, I2C0, SclPin); impl_pin!(PIN_2, I2C1, SdaPin); impl_pin!(PIN_3, I2C1, SclPin); impl_pin!(PIN_4, I2C0, SdaPin); impl_pin!(PIN_5, I2C0, SclPin); impl_pin!(PIN_6, I2C1, SdaPin); impl_pin!(PIN_7, I2C1, SclPin); impl_pin!(PIN_8, I2C0, SdaPin); impl_pin!(PIN_9, I2C0, SclPin); impl_pin!(PIN_10, I2C1, SdaPin); impl_pin!(PIN_11, I2C1, SclPin); impl_pin!(PIN_12, I2C0, SdaPin); impl_pin!(PIN_13, I2C0, SclPin); impl_pin!(PIN_14, I2C1, SdaPin); impl_pin!(PIN_15, I2C1, SclPin); impl_pin!(PIN_16, I2C0, SdaPin); impl_pin!(PIN_17, I2C0, SclPin); impl_pin!(PIN_18, I2C1, SdaPin); impl_pin!(PIN_19, I2C1, SclPin); impl_pin!(PIN_20, I2C0, SdaPin); impl_pin!(PIN_21, I2C0, SclPin); impl_pin!(PIN_22, I2C1, SdaPin); impl_pin!(PIN_23, I2C1, SclPin); impl_pin!(PIN_24, I2C0, SdaPin); impl_pin!(PIN_25, I2C0, SclPin); impl_pin!(PIN_26, I2C1, SdaPin); impl_pin!(PIN_27, I2C1, SclPin); impl_pin!(PIN_28, I2C0, SdaPin); impl_pin!(PIN_29, I2C0, SclPin);