use core::sync::atomic::{AtomicU16, AtomicU32, Ordering}; use embassy_hal_common::{into_ref, PeripheralRef}; use pac::clocks::vals::*; use crate::{pac, reset, Peripheral}; struct Clocks { xosc: AtomicU32, sys: AtomicU32, reference: AtomicU32, pll_sys: AtomicU32, pll_usb: AtomicU32, usb: AtomicU32, adc: AtomicU32, gpin0: AtomicU32, gpin1: AtomicU32, rosc: AtomicU32, peri: AtomicU32, rtc: AtomicU16, } static CLOCKS: Clocks = Clocks { xosc: AtomicU32::new(0), sys: AtomicU32::new(0), reference: AtomicU32::new(0), pll_sys: AtomicU32::new(0), pll_usb: AtomicU32::new(0), usb: AtomicU32::new(0), adc: AtomicU32::new(0), gpin0: AtomicU32::new(0), gpin1: AtomicU32::new(0), rosc: AtomicU32::new(0), peri: AtomicU32::new(0), rtc: AtomicU16::new(0), }; #[repr(u8)] #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum PeriClkSrc { Sys = ClkPeriCtrlAuxsrc::CLK_SYS.0, PllSys = ClkPeriCtrlAuxsrc::CLKSRC_PLL_SYS.0, PllUsb = ClkPeriCtrlAuxsrc::CLKSRC_PLL_USB.0, Rosc = ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH.0, Xosc = ClkPeriCtrlAuxsrc::XOSC_CLKSRC.0, Gpin0 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN0.0, Gpin1 = ClkPeriCtrlAuxsrc::CLKSRC_GPIN1.0, } #[non_exhaustive] pub struct ClockConfig { pub rosc: Option, pub xosc: Option, pub ref_clk: RefClkConfig, pub sys_clk: SysClkConfig, pub peri_clk_src: Option, pub usb_clk: Option, pub adc_clk: Option, pub rtc_clk: Option, pub gpin0_hz: Option, pub gpin1_hz: Option, } impl ClockConfig { pub fn crystal(crystal_hz: u32) -> Self { Self { rosc: Some(RoscConfig { hz: 6_500_000, range: RoscRange::Medium, drive_strength: [0; 8], div: 16, }), xosc: Some(XoscConfig { hz: crystal_hz, sys_pll: Some(PllConfig { refdiv: 1, fbdiv: 125, post_div1: 6, post_div2: 2, }), usb_pll: Some(PllConfig { refdiv: 1, fbdiv: 120, post_div1: 6, post_div2: 5, }), }), ref_clk: RefClkConfig { src: RefClkSrc::Xosc, div: 1, }, sys_clk: SysClkConfig { src: SysClkSrc::PllSys, div_int: 1, div_frac: 0, }, peri_clk_src: Some(PeriClkSrc::Sys), // CLK USB = PLL USB (48MHz) / 1 = 48MHz usb_clk: Some(UsbClkConfig { src: UsbClkSrc::PllUsb, div: 1, phase: 0, }), // CLK ADC = PLL USB (48MHZ) / 1 = 48MHz adc_clk: Some(AdcClkConfig { src: AdcClkSrc::PllUsb, div: 1, phase: 0, }), // CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz rtc_clk: Some(RtcClkConfig { src: RtcClkSrc::PllUsb, div_int: 1024, div_frac: 0, phase: 0, }), gpin0_hz: None, gpin1_hz: None, } } pub fn rosc() -> Self { Self { rosc: Some(RoscConfig { hz: 140_000_000, range: RoscRange::High, drive_strength: [0; 8], div: 1, }), xosc: None, ref_clk: RefClkConfig { src: RefClkSrc::Rosc, div: 1, }, sys_clk: SysClkConfig { src: SysClkSrc::Rosc, div_int: 1, div_frac: 0, }, peri_clk_src: Some(PeriClkSrc::Rosc), usb_clk: None, // CLK ADC = ROSC (140MHz) / 3 ≅ 48MHz adc_clk: Some(AdcClkConfig { src: AdcClkSrc::Rosc, div: 3, phase: 0, }), // CLK RTC = ROSC (140MHz) / 2986.667969 ≅ 46875Hz rtc_clk: Some(RtcClkConfig { src: RtcClkSrc::Rosc, div_int: 2986, div_frac: 171, phase: 0, }), gpin0_hz: None, gpin1_hz: None, } } } #[repr(u16)] #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum RoscRange { Low = pac::rosc::vals::FreqRange::LOW.0, Medium = pac::rosc::vals::FreqRange::MEDIUM.0, High = pac::rosc::vals::FreqRange::HIGH.0, TooHigh = pac::rosc::vals::FreqRange::TOOHIGH.0, } pub struct RoscConfig { /// Final frequency of the oscillator, after the divider has been applied. /// The oscillator has a nominal frequency of 6.5MHz at medium range with /// divider 16 and all drive strengths set to 0, other values should be /// measured in situ. pub hz: u32, pub range: RoscRange, pub drive_strength: [u8; 8], pub div: u16, } pub struct XoscConfig { pub hz: u32, pub sys_pll: Option, pub usb_pll: Option, } pub struct PllConfig { pub refdiv: u8, pub fbdiv: u16, pub post_div1: u8, pub post_div2: u8, } pub struct RefClkConfig { pub src: RefClkSrc, pub div: u8, } #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum RefClkSrc { // main sources Xosc, Rosc, // aux sources PllUsb, Gpin0, Gpin1, } #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum SysClkSrc { // main sources Ref, // aux sources PllSys, PllUsb, Rosc, Xosc, Gpin0, Gpin1, } pub struct SysClkConfig { pub src: SysClkSrc, pub div_int: u32, pub div_frac: u8, } #[repr(u8)] #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum UsbClkSrc { PllUsb = ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB.0, PllSys = ClkUsbCtrlAuxsrc::CLKSRC_PLL_SYS.0, Rosc = ClkUsbCtrlAuxsrc::ROSC_CLKSRC_PH.0, Xosc = ClkUsbCtrlAuxsrc::XOSC_CLKSRC.0, Gpin0 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN0.0, Gpin1 = ClkUsbCtrlAuxsrc::CLKSRC_GPIN1.0, } pub struct UsbClkConfig { pub src: UsbClkSrc, pub div: u8, pub phase: u8, } #[repr(u8)] #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum AdcClkSrc { PllUsb = ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB.0, PllSys = ClkAdcCtrlAuxsrc::CLKSRC_PLL_SYS.0, Rosc = ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH.0, Xosc = ClkAdcCtrlAuxsrc::XOSC_CLKSRC.0, Gpin0 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN0.0, Gpin1 = ClkAdcCtrlAuxsrc::CLKSRC_GPIN1.0, } pub struct AdcClkConfig { pub src: AdcClkSrc, pub div: u8, pub phase: u8, } #[repr(u8)] #[non_exhaustive] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum RtcClkSrc { PllUsb = ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB.0, PllSys = ClkRtcCtrlAuxsrc::CLKSRC_PLL_SYS.0, Rosc = ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH.0, Xosc = ClkRtcCtrlAuxsrc::XOSC_CLKSRC.0, Gpin0 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN0.0, Gpin1 = ClkRtcCtrlAuxsrc::CLKSRC_GPIN1.0, } pub struct RtcClkConfig { pub src: RtcClkSrc, pub div_int: u32, pub div_frac: u8, pub phase: u8, } /// safety: must be called exactly once at bootup pub(crate) unsafe fn init(config: ClockConfig) { // Reset everything except: // - QSPI (we're using it to run this code!) // - PLLs (it may be suicide if that's what's clocking us) // - USB, SYSCFG (breaks usb-to-swd on core1) let mut peris = reset::ALL_PERIPHERALS; peris.set_io_qspi(false); peris.set_pads_qspi(false); peris.set_pll_sys(false); peris.set_pll_usb(false); // TODO investigate if usb should be unreset here peris.set_usbctrl(false); peris.set_syscfg(false); reset::reset(peris); // Disable resus that may be enabled from previous software let c = pac::CLOCKS; c.clk_sys_resus_ctrl() .write_value(pac::clocks::regs::ClkSysResusCtrl(0)); // Before we touch PLLs, switch sys and ref cleanly away from their aux sources. c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF)); while c.clk_sys_selected().read() != 1 {} c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH)); while c.clk_ref_selected().read() != 1 {} // Reset the PLLs let mut peris = reset::Peripherals(0); peris.set_pll_sys(true); peris.set_pll_usb(true); reset::reset(peris); reset::unreset_wait(peris); let gpin0_freq = config.gpin0_hz.unwrap_or(0); CLOCKS.gpin0.store(gpin0_freq, Ordering::Relaxed); let gpin1_freq = config.gpin1_hz.unwrap_or(0); CLOCKS.gpin1.store(gpin1_freq, Ordering::Relaxed); let rosc_freq = match config.rosc { Some(config) => configure_rosc(config), None => 0, }; CLOCKS.rosc.store(rosc_freq, Ordering::Relaxed); let (xosc_freq, pll_sys_freq, pll_usb_freq) = match config.xosc { Some(config) => { pac::WATCHDOG.tick().write(|w| { w.set_cycles((config.hz / 1_000_000) as u16); w.set_enable(true); }); // start XOSC // datasheet mentions support for clock inputs into XIN, but doesn't go into // how this is achieved. pico-sdk doesn't support this at all. start_xosc(config.hz); let pll_sys_freq = match config.sys_pll { Some(sys_pll_config) => configure_pll(pac::PLL_SYS, config.hz, sys_pll_config), None => 0, }; let pll_usb_freq = match config.usb_pll { Some(usb_pll_config) => configure_pll(pac::PLL_USB, config.hz, usb_pll_config), None => 0, }; (config.hz, pll_sys_freq, pll_usb_freq) } None => (0, 0, 0), }; CLOCKS.xosc.store(xosc_freq, Ordering::Relaxed); CLOCKS.pll_sys.store(pll_sys_freq, Ordering::Relaxed); CLOCKS.pll_usb.store(pll_usb_freq, Ordering::Relaxed); let (ref_src, ref_aux, clk_ref_freq) = { use {ClkRefCtrlAuxsrc as Aux, ClkRefCtrlSrc as Src}; let div = config.ref_clk.div as u32; assert!(div >= 1 && div <= 4); match config.ref_clk.src { RefClkSrc::Xosc => (Src::XOSC_CLKSRC, Aux::CLKSRC_PLL_USB, xosc_freq / div), RefClkSrc::Rosc => (Src::ROSC_CLKSRC_PH, Aux::CLKSRC_PLL_USB, rosc_freq / div), RefClkSrc::PllUsb => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq / div), RefClkSrc::Gpin0 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN0, gpin0_freq / div), RefClkSrc::Gpin1 => (Src::CLKSRC_CLK_REF_AUX, Aux::CLKSRC_GPIN1, gpin1_freq / div), } }; assert!(clk_ref_freq != 0); CLOCKS.reference.store(clk_ref_freq, Ordering::Relaxed); c.clk_ref_ctrl().write(|w| { w.set_src(ref_src); w.set_auxsrc(ref_aux); }); while c.clk_ref_selected().read() != 1 << ref_src.0 {} c.clk_ref_div().write(|w| { w.set_int(config.ref_clk.div); }); pac::WATCHDOG.tick().write(|w| { w.set_cycles((clk_ref_freq / 1_000_000) as u16); w.set_enable(true); }); let (sys_src, sys_aux, clk_sys_freq) = { use {ClkSysCtrlAuxsrc as Aux, ClkSysCtrlSrc as Src}; let (src, aux, freq) = match config.sys_clk.src { SysClkSrc::Ref => (Src::CLK_REF, Aux::CLKSRC_PLL_SYS, clk_ref_freq), SysClkSrc::PllSys => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_SYS, pll_sys_freq), SysClkSrc::PllUsb => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_PLL_USB, pll_usb_freq), SysClkSrc::Rosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::ROSC_CLKSRC, rosc_freq), SysClkSrc::Xosc => (Src::CLKSRC_CLK_SYS_AUX, Aux::XOSC_CLKSRC, xosc_freq), SysClkSrc::Gpin0 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN0, gpin0_freq), SysClkSrc::Gpin1 => (Src::CLKSRC_CLK_SYS_AUX, Aux::CLKSRC_GPIN1, gpin1_freq), }; assert!(config.sys_clk.div_int <= 0x1000000); let div = config.sys_clk.div_int as u64 * 256 + config.sys_clk.div_frac as u64; (src, aux, ((freq as u64 * 256) / div) as u32) }; assert!(clk_sys_freq != 0); CLOCKS.sys.store(clk_sys_freq, Ordering::Relaxed); if sys_src != ClkSysCtrlSrc::CLK_REF { c.clk_sys_ctrl().write(|w| w.set_src(ClkSysCtrlSrc::CLK_REF)); while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {} } c.clk_sys_ctrl().write(|w| { w.set_auxsrc(sys_aux); w.set_src(sys_src); }); while c.clk_sys_selected().read() != 1 << sys_src.0 {} c.clk_sys_div().write(|w| { w.set_int(config.sys_clk.div_int); w.set_frac(config.sys_clk.div_frac); }); let mut peris = reset::ALL_PERIPHERALS; if let Some(src) = config.peri_clk_src { c.clk_peri_ctrl().write(|w| { w.set_enable(true); w.set_auxsrc(ClkPeriCtrlAuxsrc(src as _)); }); let peri_freq = match src { PeriClkSrc::Sys => clk_sys_freq, PeriClkSrc::PllSys => pll_sys_freq, PeriClkSrc::PllUsb => pll_usb_freq, PeriClkSrc::Rosc => rosc_freq, PeriClkSrc::Xosc => xosc_freq, PeriClkSrc::Gpin0 => gpin0_freq, PeriClkSrc::Gpin1 => gpin1_freq, }; assert!(peri_freq != 0); CLOCKS.peri.store(peri_freq, Ordering::Relaxed); } else { peris.set_spi0(false); peris.set_spi1(false); peris.set_uart0(false); peris.set_uart1(false); CLOCKS.peri.store(0, Ordering::Relaxed); } if let Some(conf) = config.usb_clk { c.clk_usb_div().write(|w| w.set_int(conf.div)); c.clk_usb_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(ClkUsbCtrlAuxsrc(conf.src as _)); }); let usb_freq = match conf.src { UsbClkSrc::PllUsb => pll_usb_freq, UsbClkSrc::PllSys => pll_sys_freq, UsbClkSrc::Rosc => rosc_freq, UsbClkSrc::Xosc => xosc_freq, UsbClkSrc::Gpin0 => gpin0_freq, UsbClkSrc::Gpin1 => gpin1_freq, }; assert!(usb_freq != 0); assert!(conf.div >= 1 && conf.div <= 4); CLOCKS.usb.store(usb_freq / conf.div as u32, Ordering::Relaxed); } else { peris.set_usbctrl(false); CLOCKS.usb.store(0, Ordering::Relaxed); } if let Some(conf) = config.adc_clk { c.clk_adc_div().write(|w| w.set_int(conf.div)); c.clk_adc_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(ClkAdcCtrlAuxsrc(conf.src as _)); }); let adc_in_freq = match conf.src { AdcClkSrc::PllUsb => pll_usb_freq, AdcClkSrc::PllSys => pll_sys_freq, AdcClkSrc::Rosc => rosc_freq, AdcClkSrc::Xosc => xosc_freq, AdcClkSrc::Gpin0 => gpin0_freq, AdcClkSrc::Gpin1 => gpin1_freq, }; assert!(adc_in_freq != 0); assert!(conf.div >= 1 && conf.div <= 4); CLOCKS.adc.store(adc_in_freq / conf.div as u32, Ordering::Relaxed); } else { peris.set_adc(false); CLOCKS.adc.store(0, Ordering::Relaxed); } if let Some(conf) = config.rtc_clk { c.clk_rtc_ctrl().modify(|w| { w.set_enable(false); }); c.clk_rtc_div().write(|w| { w.set_int(conf.div_int); w.set_frac(conf.div_frac); }); c.clk_rtc_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(ClkRtcCtrlAuxsrc(conf.src as _)); }); let rtc_in_freq = match conf.src { RtcClkSrc::PllUsb => pll_usb_freq, RtcClkSrc::PllSys => pll_sys_freq, RtcClkSrc::Rosc => rosc_freq, RtcClkSrc::Xosc => xosc_freq, RtcClkSrc::Gpin0 => gpin0_freq, RtcClkSrc::Gpin1 => gpin1_freq, }; assert!(rtc_in_freq != 0); assert!(config.sys_clk.div_int <= 0x1000000); CLOCKS.rtc.store( ((rtc_in_freq as u64 * 256) / (conf.div_int as u64 * 256 + conf.div_frac as u64)) as u16, Ordering::Relaxed, ); } else { peris.set_rtc(false); CLOCKS.rtc.store(0, Ordering::Relaxed); } // Peripheral clocks should now all be running reset::unreset_wait(peris); } unsafe fn configure_rosc(config: RoscConfig) -> u32 { let p = pac::ROSC; p.freqa().write(|w| { w.set_passwd(pac::rosc::vals::Passwd::PASS); w.set_ds0(config.drive_strength[0]); w.set_ds1(config.drive_strength[1]); w.set_ds2(config.drive_strength[2]); w.set_ds3(config.drive_strength[3]); }); p.freqb().write(|w| { w.set_passwd(pac::rosc::vals::Passwd::PASS); w.set_ds4(config.drive_strength[4]); w.set_ds5(config.drive_strength[5]); w.set_ds6(config.drive_strength[6]); w.set_ds7(config.drive_strength[7]); }); p.div().write(|w| { w.set_div(pac::rosc::vals::Div(config.div + pac::rosc::vals::Div::PASS.0)); }); p.ctrl().write(|w| { w.set_enable(pac::rosc::vals::Enable::ENABLE); w.set_freq_range(pac::rosc::vals::FreqRange(config.range as u16)); }); config.hz } pub fn rosc_freq() -> u32 { CLOCKS.rosc.load(Ordering::Relaxed) } pub fn xosc_freq() -> u32 { CLOCKS.xosc.load(Ordering::Relaxed) } pub fn gpin0_freq() -> u32 { CLOCKS.gpin0.load(Ordering::Relaxed) } pub fn gpin1_freq() -> u32 { CLOCKS.gpin1.load(Ordering::Relaxed) } pub fn pll_sys_freq() -> u32 { CLOCKS.pll_sys.load(Ordering::Relaxed) } pub fn pll_usb_freq() -> u32 { CLOCKS.pll_usb.load(Ordering::Relaxed) } pub fn clk_sys_freq() -> u32 { CLOCKS.sys.load(Ordering::Relaxed) } pub fn clk_ref_freq() -> u32 { CLOCKS.reference.load(Ordering::Relaxed) } pub fn clk_peri_freq() -> u32 { CLOCKS.peri.load(Ordering::Relaxed) } pub fn clk_usb_freq() -> u32 { CLOCKS.usb.load(Ordering::Relaxed) } pub fn clk_adc_freq() -> u32 { CLOCKS.adc.load(Ordering::Relaxed) } pub fn clk_rtc_freq() -> u16 { CLOCKS.rtc.load(Ordering::Relaxed) } unsafe fn start_xosc(crystal_hz: u32) { pac::XOSC .ctrl() .write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ)); let startup_delay = ((crystal_hz / 1000) + 128) / 256; pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16)); pac::XOSC.ctrl().write(|w| { w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ); w.set_enable(pac::xosc::vals::Enable::ENABLE); }); while !pac::XOSC.status().read().stable() {} } #[inline(always)] unsafe fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) -> u32 { let ref_freq = input_freq / config.refdiv as u32; assert!(config.fbdiv >= 16 && config.fbdiv <= 320); assert!(config.post_div1 >= 1 && config.post_div1 <= 7); assert!(config.post_div2 >= 1 && config.post_div2 <= 7); assert!(config.refdiv >= 1 && config.refdiv <= 63); assert!(ref_freq >= 5_000_000 && ref_freq <= 800_000_000); let vco_freq = ref_freq.saturating_mul(config.fbdiv as u32); assert!(vco_freq >= 750_000_000 && vco_freq <= 1800_000_000); // Load VCO-related dividers before starting VCO p.cs().write(|w| w.set_refdiv(config.refdiv as _)); p.fbdiv_int().write(|w| w.set_fbdiv_int(config.fbdiv)); // Turn on PLL let pwr = p.pwr().write(|w| { w.set_dsmpd(true); // "nothing is achieved by setting this low" w.set_pd(false); w.set_vcopd(false); w.set_postdivpd(true); *w }); // Wait for PLL to lock while !p.cs().read().lock() {} // Set post-dividers p.prim().write(|w| { w.set_postdiv1(config.post_div1); w.set_postdiv2(config.post_div2); }); // Turn on post divider p.pwr().write(|w| { *w = pwr; w.set_postdivpd(false); }); vco_freq / ((config.post_div1 * config.post_div2) as u32) } pub trait GpinPin: crate::gpio::Pin { fn number(&self) -> usize; } macro_rules! impl_gpinpin { ($name:ident, $pin_num:expr, $gpin_num:expr) => { impl GpinPin for crate::peripherals::$name { fn number(&self) -> usize { $gpin_num } } }; } impl_gpinpin!(PIN_20, 20, 0); impl_gpinpin!(PIN_22, 22, 1); pub struct Gpin<'d, T: GpinPin> { gpin: PeripheralRef<'d, T>, } impl<'d, T: GpinPin> Gpin<'d, T> { pub fn new(gpin: impl Peripheral

+ 'd) -> Self { into_ref!(gpin); unsafe { gpin.io().ctrl().write(|w| w.set_funcsel(0x08)); } Self { gpin } } } impl<'d, T: GpinPin> Drop for Gpin<'d, T> { fn drop(&mut self) { unsafe { self.gpin .io() .ctrl() .write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL.0)); } } } pub trait GpoutPin: crate::gpio::Pin { fn number(&self) -> usize; } macro_rules! impl_gpoutpin { ($name:ident, $gpout_num:expr) => { impl GpoutPin for crate::peripherals::$name { fn number(&self) -> usize { $gpout_num } } }; } impl_gpoutpin!(PIN_21, 0); impl_gpoutpin!(PIN_23, 1); impl_gpoutpin!(PIN_24, 2); impl_gpoutpin!(PIN_25, 3); #[repr(u8)] pub enum GpoutSrc { PllSys = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS.0, Gpin0 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0.0, Gpin1 = ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1.0, PllUsb = ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB.0, Rosc = ClkGpoutCtrlAuxsrc::ROSC_CLKSRC.0, Xosc = ClkGpoutCtrlAuxsrc::XOSC_CLKSRC.0, Sys = ClkGpoutCtrlAuxsrc::CLK_SYS.0, Usb = ClkGpoutCtrlAuxsrc::CLK_USB.0, Adc = ClkGpoutCtrlAuxsrc::CLK_ADC.0, Rtc = ClkGpoutCtrlAuxsrc::CLK_RTC.0, Ref = ClkGpoutCtrlAuxsrc::CLK_REF.0, } pub struct Gpout<'d, T: GpoutPin> { gpout: PeripheralRef<'d, T>, } impl<'d, T: GpoutPin> Gpout<'d, T> { pub fn new(gpout: impl Peripheral

+ 'd) -> Self { into_ref!(gpout); unsafe { gpout.io().ctrl().write(|w| w.set_funcsel(0x08)); } Self { gpout } } pub fn set_div(&self, int: u32, frac: u8) { unsafe { let c = pac::CLOCKS; c.clk_gpout_div(self.gpout.number()).write(|w| { w.set_int(int); w.set_frac(frac); }); } } pub fn set_src(&self, src: GpoutSrc) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_auxsrc(ClkGpoutCtrlAuxsrc(src as _)); }); } } pub fn enable(&self) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_enable(true); }); } } pub fn disable(&self) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_enable(false); }); } } pub fn get_freq(&self) -> u32 { let c = pac::CLOCKS; let src = unsafe { c.clk_gpout_ctrl(self.gpout.number()).read().auxsrc() }; let base = match src { ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkGpoutCtrlAuxsrc::ROSC_CLKSRC => rosc_freq(), ClkGpoutCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkGpoutCtrlAuxsrc::CLK_SYS => clk_sys_freq(), ClkGpoutCtrlAuxsrc::CLK_USB => clk_usb_freq(), ClkGpoutCtrlAuxsrc::CLK_ADC => clk_adc_freq(), ClkGpoutCtrlAuxsrc::CLK_RTC => clk_rtc_freq() as _, ClkGpoutCtrlAuxsrc::CLK_REF => clk_ref_freq(), _ => unreachable!(), }; let div = unsafe { c.clk_gpout_div(self.gpout.number()).read() }; let int = if div.int() == 0 { 65536 } else { div.int() } as u64; let frac = div.frac() as u64; ((base as u64 * 256) / (int * 256 + frac)) as u32 } } impl<'d, T: GpoutPin> Drop for Gpout<'d, T> { fn drop(&mut self) { self.disable(); unsafe { self.gpout .io() .ctrl() .write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL.0)); } } } /// Random number generator based on the ROSC RANDOMBIT register. /// /// This will not produce random values if the ROSC is stopped or run at some /// harmonic of the bus frequency. With default clock settings these are not /// issues. pub struct RoscRng; impl RoscRng { fn next_u8() -> u8 { let random_reg = pac::ROSC.randombit(); let mut acc = 0; for _ in 0..u8::BITS { acc <<= 1; acc |= unsafe { random_reg.read().randombit() as u8 }; } acc } } impl rand_core::RngCore for RoscRng { fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { Ok(self.fill_bytes(dest)) } fn next_u32(&mut self) -> u32 { rand_core::impls::next_u32_via_fill(self) } fn next_u64(&mut self) -> u64 { rand_core::impls::next_u64_via_fill(self) } fn fill_bytes(&mut self, dest: &mut [u8]) { dest.fill_with(Self::next_u8) } }