//! GPIO driver. #![macro_use] use core::convert::Infallible; use core::future::Future; use core::pin::Pin as FuturePin; use core::task::{Context, Poll}; use embassy_hal_internal::{impl_peripheral, into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use crate::interrupt::InterruptExt; use crate::pac::common::{Reg, RW}; use crate::pac::SIO; use crate::{interrupt, pac, peripherals, Peripheral, RegExt}; const NEW_AW: AtomicWaker = AtomicWaker::new(); const BANK0_PIN_COUNT: usize = 30; static BANK0_WAKERS: [AtomicWaker; BANK0_PIN_COUNT] = [NEW_AW; BANK0_PIN_COUNT]; #[cfg(feature = "qspi-as-gpio")] const QSPI_PIN_COUNT: usize = 6; #[cfg(feature = "qspi-as-gpio")] static QSPI_WAKERS: [AtomicWaker; QSPI_PIN_COUNT] = [NEW_AW; QSPI_PIN_COUNT]; /// Represents a digital input or output level. #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum Level { /// Logical low. Low, /// Logical high. High, } impl From for Level { fn from(val: bool) -> Self { match val { true => Self::High, false => Self::Low, } } } impl From for bool { fn from(level: Level) -> bool { match level { Level::Low => false, Level::High => true, } } } /// Represents a pull setting for an input. #[derive(Debug, Clone, Copy, Eq, PartialEq)] pub enum Pull { /// No pull. None, /// Internal pull-up resistor. Up, /// Internal pull-down resistor. Down, } /// Drive strength of an output #[derive(Debug, Eq, PartialEq)] pub enum Drive { /// 2 mA drive. _2mA, /// 4 mA drive. _4mA, /// 8 mA drive. _8mA, /// 1 2mA drive. _12mA, } /// Slew rate of an output #[derive(Debug, Eq, PartialEq)] pub enum SlewRate { /// Fast slew rate. Fast, /// Slow slew rate. Slow, } /// A GPIO bank with up to 32 pins. #[derive(Debug, Eq, PartialEq)] pub enum Bank { /// Bank 0. Bank0 = 0, /// QSPI. #[cfg(feature = "qspi-as-gpio")] Qspi = 1, } /// Dormant mode config. #[derive(Debug, Eq, PartialEq, Copy, Clone, Default)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct DormantWakeConfig { /// Wake on edge high. pub edge_high: bool, /// Wake on edge low. pub edge_low: bool, /// Wake on level high. pub level_high: bool, /// Wake on level low. pub level_low: bool, } /// GPIO input driver. pub struct Input<'d, T: Pin> { pin: Flex<'d, T>, } impl<'d, T: Pin> Input<'d, T> { /// Create GPIO input driver for a [Pin] with the provided [Pull] configuration. #[inline] pub fn new(pin: impl Peripheral

+ 'd, pull: Pull) -> Self { let mut pin = Flex::new(pin); pin.set_as_input(); pin.set_pull(pull); Self { pin } } /// Set the pin's Schmitt trigger. #[inline] pub fn set_schmitt(&mut self, enable: bool) { self.pin.set_schmitt(enable) } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { self.pin.is_high() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.pin.is_low() } /// Returns current pin level #[inline] pub fn get_level(&mut self) -> Level { self.pin.get_level() } /// Wait until the pin is high. If it is already high, return immediately. #[inline] pub async fn wait_for_high(&mut self) { self.pin.wait_for_high().await; } /// Wait until the pin is low. If it is already low, return immediately. #[inline] pub async fn wait_for_low(&mut self) { self.pin.wait_for_low().await; } /// Wait for the pin to undergo a transition from low to high. #[inline] pub async fn wait_for_rising_edge(&mut self) { self.pin.wait_for_rising_edge().await; } /// Wait for the pin to undergo a transition from high to low. #[inline] pub async fn wait_for_falling_edge(&mut self) { self.pin.wait_for_falling_edge().await; } /// Wait for the pin to undergo any transition, i.e low to high OR high to low. #[inline] pub async fn wait_for_any_edge(&mut self) { self.pin.wait_for_any_edge().await; } /// Configure dormant wake. #[inline] pub fn dormant_wake(&mut self, cfg: DormantWakeConfig) -> DormantWake { self.pin.dormant_wake(cfg) } } /// Interrupt trigger levels. #[derive(Debug, Eq, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum InterruptTrigger { /// Trigger on pin low. LevelLow, /// Trigger on pin high. LevelHigh, /// Trigger on high to low transition. EdgeLow, /// Trigger on low to high transition. EdgeHigh, /// Trigger on any transition. AnyEdge, } pub(crate) unsafe fn init() { interrupt::IO_IRQ_BANK0.disable(); interrupt::IO_IRQ_BANK0.set_priority(interrupt::Priority::P3); interrupt::IO_IRQ_BANK0.enable(); #[cfg(feature = "qspi-as-gpio")] { interrupt::IO_IRQ_QSPI.disable(); interrupt::IO_IRQ_QSPI.set_priority(interrupt::Priority::P3); interrupt::IO_IRQ_QSPI.enable(); } } #[cfg(feature = "rt")] fn irq_handler(bank: pac::io::Io, wakers: &[AtomicWaker; N]) { let cpu = SIO.cpuid().read() as usize; // There are two sets of interrupt registers, one for cpu0 and one for cpu1 // and here we are selecting the set that belongs to the currently executing // cpu. let proc_intx: pac::io::Int = bank.int_proc(cpu); for pin in 0..N { // There are 4 raw interrupt status registers, PROCx_INTS0, PROCx_INTS1, // PROCx_INTS2, and PROCx_INTS3, and we are selecting the one that the // current pin belongs to. let intsx = proc_intx.ints(pin / 8); // The status register is divided into groups of four, one group for // each pin. Each group consists of four trigger levels LEVEL_LOW, // LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin. let pin_group = (pin % 8) as usize; let event = (intsx.read().0 >> pin_group * 4) & 0xf as u32; // no more than one event can be awaited per pin at any given time, so // we can just clear all interrupt enables for that pin without having // to check which event was signalled. if event != 0 { proc_intx.inte(pin / 8).write_clear(|w| { w.set_edge_high(pin_group, true); w.set_edge_low(pin_group, true); w.set_level_high(pin_group, true); w.set_level_low(pin_group, true); }); wakers[pin as usize].wake(); } } } #[cfg(feature = "rt")] #[interrupt] fn IO_IRQ_BANK0() { irq_handler(pac::IO_BANK0, &BANK0_WAKERS); } #[cfg(all(feature = "rt", feature = "qspi-as-gpio"))] #[interrupt] fn IO_IRQ_QSPI() { irq_handler(pac::IO_QSPI, &QSPI_WAKERS); } #[must_use = "futures do nothing unless you `.await` or poll them"] struct InputFuture<'a, T: Pin> { pin: PeripheralRef<'a, T>, } impl<'d, T: Pin> InputFuture<'d, T> { /// Create a new future wiating for input trigger. pub fn new(pin: impl Peripheral

+ 'd, level: InterruptTrigger) -> Self { into_ref!(pin); let pin_group = (pin.pin() % 8) as usize; // first, clear the INTR register bits. without this INTR will still // contain reports of previous edges, causing the IRQ to fire early // on stale state. clearing these means that we can only detect edges // that occur *after* the clear happened, but since both this and the // alternative are fundamentally racy it's probably fine. // (the alternative being checking the current level and waiting for // its inverse, but that requires reading the current level and thus // missing anything that happened before the level was read.) pin.io().intr(pin.pin() as usize / 8).write(|w| { w.set_edge_high(pin_group, true); w.set_edge_low(pin_group, true); }); // Each INTR register is divided into 8 groups, one group for each // pin, and each group consists of LEVEL_LOW, LEVEL_HIGH, EDGE_LOW, // and EGDE_HIGH. pin.int_proc() .inte((pin.pin() / 8) as usize) .write_set(|w| match level { InterruptTrigger::LevelHigh => { w.set_level_high(pin_group, true); } InterruptTrigger::LevelLow => { w.set_level_low(pin_group, true); } InterruptTrigger::EdgeHigh => { w.set_edge_high(pin_group, true); } InterruptTrigger::EdgeLow => { w.set_edge_low(pin_group, true); } InterruptTrigger::AnyEdge => { w.set_edge_high(pin_group, true); w.set_edge_low(pin_group, true); } }); Self { pin } } } impl<'d, T: Pin> Future for InputFuture<'d, T> { type Output = (); fn poll(self: FuturePin<&mut Self>, cx: &mut Context<'_>) -> Poll { // We need to register/re-register the waker for each poll because any // calls to wake will deregister the waker. let waker = match self.pin.bank() { Bank::Bank0 => &BANK0_WAKERS[self.pin.pin() as usize], #[cfg(feature = "qspi-as-gpio")] Bank::Qspi => &QSPI_WAKERS[self.pin.pin() as usize], }; waker.register(cx.waker()); // self.int_proc() will get the register offset for the current cpu, // then we want to access the interrupt enable register for our // pin (there are 4 of these PROC0_INTE0, PROC0_INTE1, PROC0_INTE2, and // PROC0_INTE3 per cpu). let inte: pac::io::regs::Int = self.pin.int_proc().inte((self.pin.pin() / 8) as usize).read(); // The register is divided into groups of four, one group for // each pin. Each group consists of four trigger levels LEVEL_LOW, // LEVEL_HIGH, EDGE_LOW, and EDGE_HIGH for each pin. let pin_group = (self.pin.pin() % 8) as usize; // since the interrupt handler clears all INTE flags we'll check that // all have been cleared and unconditionally return Ready(()) if so. // we don't need further handshaking since only a single event wait // is possible for any given pin at any given time. if !inte.edge_high(pin_group) && !inte.edge_low(pin_group) && !inte.level_high(pin_group) && !inte.level_low(pin_group) { return Poll::Ready(()); } Poll::Pending } } /// GPIO output driver. pub struct Output<'d, T: Pin> { pin: Flex<'d, T>, } impl<'d, T: Pin> Output<'d, T> { /// Create GPIO output driver for a [Pin] with the provided [Level]. #[inline] pub fn new(pin: impl Peripheral

+ 'd, initial_output: Level) -> Self { let mut pin = Flex::new(pin); match initial_output { Level::High => pin.set_high(), Level::Low => pin.set_low(), } pin.set_as_output(); Self { pin } } /// Set the pin's drive strength. #[inline] pub fn set_drive_strength(&mut self, strength: Drive) { self.pin.set_drive_strength(strength) } /// Set the pin's slew rate. #[inline] pub fn set_slew_rate(&mut self, slew_rate: SlewRate) { self.pin.set_slew_rate(slew_rate) } /// Set the output as high. #[inline] pub fn set_high(&mut self) { self.pin.set_high() } /// Set the output as low. #[inline] pub fn set_low(&mut self) { self.pin.set_low() } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { self.pin.set_level(level) } /// Is the output pin set as high? #[inline] pub fn is_set_high(&mut self) -> bool { self.pin.is_set_high() } /// Is the output pin set as low? #[inline] pub fn is_set_low(&mut self) -> bool { self.pin.is_set_low() } /// What level output is set to #[inline] pub fn get_output_level(&mut self) -> Level { self.pin.get_output_level() } /// Toggle pin output #[inline] pub fn toggle(&mut self) { self.pin.toggle() } } /// GPIO output open-drain. pub struct OutputOpenDrain<'d, T: Pin> { pin: Flex<'d, T>, } impl<'d, T: Pin> OutputOpenDrain<'d, T> { /// Create GPIO output driver for a [Pin] in open drain mode with the provided [Level]. #[inline] pub fn new(pin: impl Peripheral

+ 'd, initial_output: Level) -> Self { let mut pin = Flex::new(pin); pin.set_low(); match initial_output { Level::High => pin.set_as_input(), Level::Low => pin.set_as_output(), } Self { pin } } /// Set the pin's drive strength. #[inline] pub fn set_drive_strength(&mut self, strength: Drive) { self.pin.set_drive_strength(strength) } /// Set the pin's slew rate. #[inline] pub fn set_slew_rate(&mut self, slew_rate: SlewRate) { self.pin.set_slew_rate(slew_rate) } /// Set the output as high. #[inline] pub fn set_high(&mut self) { // For Open Drain High, disable the output pin. self.pin.set_as_input() } /// Set the output as low. #[inline] pub fn set_low(&mut self) { // For Open Drain Low, enable the output pin. self.pin.set_as_output() } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { match level { Level::Low => self.set_low(), Level::High => self.set_high(), } } /// Is the output level high? #[inline] pub fn is_set_high(&mut self) -> bool { !self.is_set_low() } /// Is the output level low? #[inline] pub fn is_set_low(&mut self) -> bool { self.pin.is_set_as_output() } /// What level output is set to #[inline] pub fn get_output_level(&mut self) -> Level { self.is_set_high().into() } /// Toggle pin output #[inline] pub fn toggle(&mut self) { self.pin.toggle_set_as_output() } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { self.pin.is_high() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.pin.is_low() } /// Returns current pin level #[inline] pub fn get_level(&mut self) -> Level { self.is_high().into() } /// Wait until the pin is high. If it is already high, return immediately. #[inline] pub async fn wait_for_high(&mut self) { self.pin.wait_for_high().await; } /// Wait until the pin is low. If it is already low, return immediately. #[inline] pub async fn wait_for_low(&mut self) { self.pin.wait_for_low().await; } /// Wait for the pin to undergo a transition from low to high. #[inline] pub async fn wait_for_rising_edge(&mut self) { self.pin.wait_for_rising_edge().await; } /// Wait for the pin to undergo a transition from high to low. #[inline] pub async fn wait_for_falling_edge(&mut self) { self.pin.wait_for_falling_edge().await; } /// Wait for the pin to undergo any transition, i.e low to high OR high to low. #[inline] pub async fn wait_for_any_edge(&mut self) { self.pin.wait_for_any_edge().await; } } /// GPIO flexible pin. /// /// This pin can be either an input or output pin. The output level register bit will remain /// set while not in output mode, so the pin's level will be 'remembered' when it is not in output /// mode. pub struct Flex<'d, T: Pin> { pin: PeripheralRef<'d, T>, } impl<'d, T: Pin> Flex<'d, T> { /// Wrap the pin in a `Flex`. /// /// The pin remains disconnected. The initial output level is unspecified, but can be changed /// before the pin is put into output mode. #[inline] pub fn new(pin: impl Peripheral

+ 'd) -> Self { into_ref!(pin); pin.pad_ctrl().write(|w| { w.set_ie(true); }); pin.gpio().ctrl().write(|w| { w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::SIO_0 as _); }); Self { pin } } #[inline] fn bit(&self) -> u32 { 1 << self.pin.pin() } /// Set the pin's pull. #[inline] pub fn set_pull(&mut self, pull: Pull) { self.pin.pad_ctrl().modify(|w| { w.set_ie(true); let (pu, pd) = match pull { Pull::Up => (true, false), Pull::Down => (false, true), Pull::None => (false, false), }; w.set_pue(pu); w.set_pde(pd); }); } /// Set the pin's drive strength. #[inline] pub fn set_drive_strength(&mut self, strength: Drive) { self.pin.pad_ctrl().modify(|w| { w.set_drive(match strength { Drive::_2mA => pac::pads::vals::Drive::_2MA, Drive::_4mA => pac::pads::vals::Drive::_4MA, Drive::_8mA => pac::pads::vals::Drive::_8MA, Drive::_12mA => pac::pads::vals::Drive::_12MA, }); }); } /// Set the pin's slew rate. #[inline] pub fn set_slew_rate(&mut self, slew_rate: SlewRate) { self.pin.pad_ctrl().modify(|w| { w.set_slewfast(slew_rate == SlewRate::Fast); }); } /// Set the pin's Schmitt trigger. #[inline] pub fn set_schmitt(&mut self, enable: bool) { self.pin.pad_ctrl().modify(|w| { w.set_schmitt(enable); }); } /// Put the pin into input mode. /// /// The pull setting is left unchanged. #[inline] pub fn set_as_input(&mut self) { self.pin.sio_oe().value_clr().write_value(self.bit()) } /// Put the pin into output mode. /// /// The pin level will be whatever was set before (or low by default). If you want it to begin /// at a specific level, call `set_high`/`set_low` on the pin first. #[inline] pub fn set_as_output(&mut self) { self.pin.sio_oe().value_set().write_value(self.bit()) } /// Set as output pin. #[inline] pub fn is_set_as_output(&mut self) -> bool { self.ref_is_set_as_output() } #[inline] pub(crate) fn ref_is_set_as_output(&self) -> bool { (self.pin.sio_oe().value().read() & self.bit()) != 0 } /// Toggle output pin. #[inline] pub fn toggle_set_as_output(&mut self) { self.pin.sio_oe().value_xor().write_value(self.bit()) } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { !self.is_low() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.ref_is_low() } #[inline] pub(crate) fn ref_is_low(&self) -> bool { self.pin.sio_in().read() & self.bit() == 0 } /// Returns current pin level #[inline] pub fn get_level(&mut self) -> Level { self.is_high().into() } /// Set the output as high. #[inline] pub fn set_high(&mut self) { self.pin.sio_out().value_set().write_value(self.bit()) } /// Set the output as low. #[inline] pub fn set_low(&mut self) { self.pin.sio_out().value_clr().write_value(self.bit()) } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { match level { Level::Low => self.set_low(), Level::High => self.set_high(), } } /// Is the output level high? #[inline] pub fn is_set_high(&mut self) -> bool { !self.is_set_low() } /// Is the output level low? #[inline] pub fn is_set_low(&mut self) -> bool { self.ref_is_set_low() } #[inline] pub(crate) fn ref_is_set_low(&self) -> bool { (self.pin.sio_out().value().read() & self.bit()) == 0 } /// What level output is set to #[inline] pub fn get_output_level(&mut self) -> Level { self.is_set_high().into() } /// Toggle pin output #[inline] pub fn toggle(&mut self) { self.pin.sio_out().value_xor().write_value(self.bit()) } /// Wait until the pin is high. If it is already high, return immediately. #[inline] pub async fn wait_for_high(&mut self) { InputFuture::new(&mut self.pin, InterruptTrigger::LevelHigh).await; } /// Wait until the pin is low. If it is already low, return immediately. #[inline] pub async fn wait_for_low(&mut self) { InputFuture::new(&mut self.pin, InterruptTrigger::LevelLow).await; } /// Wait for the pin to undergo a transition from low to high. #[inline] pub async fn wait_for_rising_edge(&mut self) { InputFuture::new(&mut self.pin, InterruptTrigger::EdgeHigh).await; } /// Wait for the pin to undergo a transition from high to low. #[inline] pub async fn wait_for_falling_edge(&mut self) { InputFuture::new(&mut self.pin, InterruptTrigger::EdgeLow).await; } /// Wait for the pin to undergo any transition, i.e low to high OR high to low. #[inline] pub async fn wait_for_any_edge(&mut self) { InputFuture::new(&mut self.pin, InterruptTrigger::AnyEdge).await; } /// Configure dormant wake. #[inline] pub fn dormant_wake(&mut self, cfg: DormantWakeConfig) -> DormantWake { let idx = self.pin._pin() as usize; self.pin.io().intr(idx / 8).write(|w| { w.set_edge_high(idx % 8, cfg.edge_high); w.set_edge_low(idx % 8, cfg.edge_low); }); self.pin.io().int_dormant_wake().inte(idx / 8).write_set(|w| { w.set_edge_high(idx % 8, cfg.edge_high); w.set_edge_low(idx % 8, cfg.edge_low); w.set_level_high(idx % 8, cfg.level_high); w.set_level_low(idx % 8, cfg.level_low); }); DormantWake { pin: self.pin.reborrow(), cfg, } } } impl<'d, T: Pin> Drop for Flex<'d, T> { #[inline] fn drop(&mut self) { let idx = self.pin._pin() as usize; self.pin.pad_ctrl().write(|_| {}); self.pin.gpio().ctrl().write(|w| { w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL as _); }); self.pin.io().int_dormant_wake().inte(idx / 8).write_clear(|w| { w.set_edge_high(idx % 8, true); w.set_edge_low(idx % 8, true); w.set_level_high(idx % 8, true); w.set_level_low(idx % 8, true); }); } } /// Dormant wake driver. pub struct DormantWake<'w, T: Pin> { pin: PeripheralRef<'w, T>, cfg: DormantWakeConfig, } impl<'w, T: Pin> Drop for DormantWake<'w, T> { fn drop(&mut self) { let idx = self.pin._pin() as usize; self.pin.io().intr(idx / 8).write(|w| { w.set_edge_high(idx % 8, self.cfg.edge_high); w.set_edge_low(idx % 8, self.cfg.edge_low); }); self.pin.io().int_dormant_wake().inte(idx / 8).write_clear(|w| { w.set_edge_high(idx % 8, true); w.set_edge_low(idx % 8, true); w.set_level_high(idx % 8, true); w.set_level_low(idx % 8, true); }); } } pub(crate) mod sealed { use super::*; pub trait Pin: Sized { fn pin_bank(&self) -> u8; #[inline] fn _pin(&self) -> u8 { self.pin_bank() & 0x1f } #[inline] fn _bank(&self) -> Bank { match self.pin_bank() & 0x20 { #[cfg(feature = "qspi-as-gpio")] 1 => Bank::Qspi, _ => Bank::Bank0, } } fn io(&self) -> pac::io::Io { match self._bank() { Bank::Bank0 => crate::pac::IO_BANK0, #[cfg(feature = "qspi-as-gpio")] Bank::Qspi => crate::pac::IO_QSPI, } } fn gpio(&self) -> pac::io::Gpio { self.io().gpio(self._pin() as _) } fn pad_ctrl(&self) -> Reg { let block = match self._bank() { Bank::Bank0 => crate::pac::PADS_BANK0, #[cfg(feature = "qspi-as-gpio")] Bank::Qspi => crate::pac::PADS_QSPI, }; block.gpio(self._pin() as _) } fn sio_out(&self) -> pac::sio::Gpio { SIO.gpio_out(self._bank() as _) } fn sio_oe(&self) -> pac::sio::Gpio { SIO.gpio_oe(self._bank() as _) } fn sio_in(&self) -> Reg { SIO.gpio_in(self._bank() as _) } fn int_proc(&self) -> pac::io::Int { let proc = SIO.cpuid().read(); self.io().int_proc(proc as _) } } } /// Interface for a Pin that can be configured by an [Input] or [Output] driver, or converted to an [AnyPin]. pub trait Pin: Peripheral

+ Into + sealed::Pin + Sized + 'static { /// Degrade to a generic pin struct fn degrade(self) -> AnyPin { AnyPin { pin_bank: self.pin_bank(), } } /// Returns the pin number within a bank #[inline] fn pin(&self) -> u8 { self._pin() } /// Returns the bank of this pin #[inline] fn bank(&self) -> Bank { self._bank() } } /// Type-erased GPIO pin pub struct AnyPin { pin_bank: u8, } impl_peripheral!(AnyPin); impl Pin for AnyPin {} impl sealed::Pin for AnyPin { fn pin_bank(&self) -> u8 { self.pin_bank } } // ========================== macro_rules! impl_pin { ($name:ident, $bank:expr, $pin_num:expr) => { impl Pin for peripherals::$name {} impl sealed::Pin for peripherals::$name { #[inline] fn pin_bank(&self) -> u8 { ($bank as u8) * 32 + $pin_num } } impl From for crate::gpio::AnyPin { fn from(val: peripherals::$name) -> Self { crate::gpio::Pin::degrade(val) } } }; } impl_pin!(PIN_0, Bank::Bank0, 0); impl_pin!(PIN_1, Bank::Bank0, 1); impl_pin!(PIN_2, Bank::Bank0, 2); impl_pin!(PIN_3, Bank::Bank0, 3); impl_pin!(PIN_4, Bank::Bank0, 4); impl_pin!(PIN_5, Bank::Bank0, 5); impl_pin!(PIN_6, Bank::Bank0, 6); impl_pin!(PIN_7, Bank::Bank0, 7); impl_pin!(PIN_8, Bank::Bank0, 8); impl_pin!(PIN_9, Bank::Bank0, 9); impl_pin!(PIN_10, Bank::Bank0, 10); impl_pin!(PIN_11, Bank::Bank0, 11); impl_pin!(PIN_12, Bank::Bank0, 12); impl_pin!(PIN_13, Bank::Bank0, 13); impl_pin!(PIN_14, Bank::Bank0, 14); impl_pin!(PIN_15, Bank::Bank0, 15); impl_pin!(PIN_16, Bank::Bank0, 16); impl_pin!(PIN_17, Bank::Bank0, 17); impl_pin!(PIN_18, Bank::Bank0, 18); impl_pin!(PIN_19, Bank::Bank0, 19); impl_pin!(PIN_20, Bank::Bank0, 20); impl_pin!(PIN_21, Bank::Bank0, 21); impl_pin!(PIN_22, Bank::Bank0, 22); impl_pin!(PIN_23, Bank::Bank0, 23); impl_pin!(PIN_24, Bank::Bank0, 24); impl_pin!(PIN_25, Bank::Bank0, 25); impl_pin!(PIN_26, Bank::Bank0, 26); impl_pin!(PIN_27, Bank::Bank0, 27); impl_pin!(PIN_28, Bank::Bank0, 28); impl_pin!(PIN_29, Bank::Bank0, 29); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SCLK, Bank::Qspi, 0); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SS, Bank::Qspi, 1); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SD0, Bank::Qspi, 2); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SD1, Bank::Qspi, 3); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SD2, Bank::Qspi, 4); #[cfg(feature = "qspi-as-gpio")] impl_pin!(PIN_QSPI_SD3, Bank::Qspi, 5); // ==================== mod eh02 { use core::convert::Infallible; use super::*; impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Input<'d, T> { type Error = Infallible; fn is_high(&self) -> Result { Ok(!self.pin.ref_is_low()) } fn is_low(&self) -> Result { Ok(self.pin.ref_is_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Output<'d, T> { type Error = Infallible; fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Output<'d, T> { fn is_set_high(&self) -> Result { Ok(!self.pin.ref_is_set_low()) } fn is_set_low(&self) -> Result { Ok(self.pin.ref_is_set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Output<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for OutputOpenDrain<'d, T> { type Error = Infallible; fn is_high(&self) -> Result { Ok(!self.pin.ref_is_low()) } fn is_low(&self) -> Result { Ok(self.pin.ref_is_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for OutputOpenDrain<'d, T> { type Error = Infallible; #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for OutputOpenDrain<'d, T> { fn is_set_high(&self) -> Result { Ok(!self.pin.ref_is_set_as_output()) } fn is_set_low(&self) -> Result { Ok(self.pin.ref_is_set_as_output()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for OutputOpenDrain<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Flex<'d, T> { type Error = Infallible; fn is_high(&self) -> Result { Ok(!self.ref_is_low()) } fn is_low(&self) -> Result { Ok(self.ref_is_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Flex<'d, T> { type Error = Infallible; fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Flex<'d, T> { fn is_set_high(&self) -> Result { Ok(!self.ref_is_set_low()) } fn is_set_low(&self) -> Result { Ok(self.ref_is_set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Flex<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Input<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Input<'d, T> { fn is_high(&mut self) -> Result { Ok(self.is_high()) } fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Output<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Output<'d, T> { fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Output<'d, T> { fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Output<'d, T> { fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for OutputOpenDrain<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for OutputOpenDrain<'d, T> { fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for OutputOpenDrain<'d, T> { fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for OutputOpenDrain<'d, T> { fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for OutputOpenDrain<'d, T> { fn is_high(&mut self) -> Result { Ok(self.is_high()) } fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Flex<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Flex<'d, T> { fn is_high(&mut self) -> Result { Ok(self.is_high()) } fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Flex<'d, T> { fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Flex<'d, T> { fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Flex<'d, T> { fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_async::digital::Wait for Flex<'d, T> { async fn wait_for_high(&mut self) -> Result<(), Self::Error> { self.wait_for_high().await; Ok(()) } async fn wait_for_low(&mut self) -> Result<(), Self::Error> { self.wait_for_low().await; Ok(()) } async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_rising_edge().await; Ok(()) } async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_falling_edge().await; Ok(()) } async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_any_edge().await; Ok(()) } } impl<'d, T: Pin> embedded_hal_async::digital::Wait for Input<'d, T> { async fn wait_for_high(&mut self) -> Result<(), Self::Error> { self.wait_for_high().await; Ok(()) } async fn wait_for_low(&mut self) -> Result<(), Self::Error> { self.wait_for_low().await; Ok(()) } async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_rising_edge().await; Ok(()) } async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_falling_edge().await; Ok(()) } async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_any_edge().await; Ok(()) } } impl<'d, T: Pin> embedded_hal_async::digital::Wait for OutputOpenDrain<'d, T> { async fn wait_for_high(&mut self) -> Result<(), Self::Error> { self.wait_for_high().await; Ok(()) } async fn wait_for_low(&mut self) -> Result<(), Self::Error> { self.wait_for_low().await; Ok(()) } async fn wait_for_rising_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_rising_edge().await; Ok(()) } async fn wait_for_falling_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_falling_edge().await; Ok(()) } async fn wait_for_any_edge(&mut self) -> Result<(), Self::Error> { self.wait_for_any_edge().await; Ok(()) } }