use embassy_hal_internal::into_ref; use embedded_hal_02::blocking::delay::DelayUs; use crate::adc::{Adc, AdcPin, Instance, SampleTime}; use crate::rcc::get_freqs; use crate::time::Hertz; use crate::Peripheral; pub const VDDA_CALIB_MV: u32 = 3300; pub const ADC_MAX: u32 = (1 << 12) - 1; // No calibration data for F103, voltage should be 1.2v pub const VREF_INT: u32 = 1200; pub struct Vref; impl AdcPin for Vref {} impl super::sealed::AdcPin for Vref { fn channel(&self) -> u8 { 17 } } pub struct Temperature; impl AdcPin for Temperature {} impl super::sealed::AdcPin for Temperature { fn channel(&self) -> u8 { 16 } } impl<'d, T: Instance> Adc<'d, T> { pub fn new(adc: impl Peripheral

+ 'd, delay: &mut impl DelayUs) -> Self { into_ref!(adc); T::enable(); T::reset(); T::regs().cr2().modify(|reg| reg.set_adon(true)); // 11.4: Before starting a calibration, the ADC must have been in power-on state (ADON bit = ‘1’) // for at least two ADC clock cycles delay.delay_us((1_000_000 * 2) / Self::freq().0 + 1); // Reset calibration T::regs().cr2().modify(|reg| reg.set_rstcal(true)); while T::regs().cr2().read().rstcal() { // spin } // Calibrate T::regs().cr2().modify(|reg| reg.set_cal(true)); while T::regs().cr2().read().cal() { // spin } // One cycle after calibration delay.delay_us((1_000_000) / Self::freq().0 + 1); Self { adc, sample_time: Default::default(), } } fn freq() -> Hertz { unsafe { get_freqs() }.adc.unwrap() } pub fn sample_time_for_us(&self, us: u32) -> SampleTime { match us * Self::freq().0 / 1_000_000 { 0..=1 => SampleTime::Cycles1_5, 2..=7 => SampleTime::Cycles7_5, 8..=13 => SampleTime::Cycles13_5, 14..=28 => SampleTime::Cycles28_5, 29..=41 => SampleTime::Cycles41_5, 42..=55 => SampleTime::Cycles55_5, 56..=71 => SampleTime::Cycles71_5, _ => SampleTime::Cycles239_5, } } pub fn enable_vref(&self, _delay: &mut impl DelayUs) -> Vref { T::regs().cr2().modify(|reg| { reg.set_tsvrefe(true); }); Vref {} } pub fn enable_temperature(&self) -> Temperature { T::regs().cr2().modify(|reg| { reg.set_tsvrefe(true); }); Temperature {} } pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } /// Perform a single conversion. fn convert(&mut self) -> u16 { T::regs().cr2().modify(|reg| { reg.set_adon(true); reg.set_swstart(true); }); while T::regs().cr2().read().swstart() {} while !T::regs().sr().read().eoc() {} T::regs().dr().read().0 as u16 } pub fn read(&mut self, pin: &mut impl AdcPin) -> u16 { Self::set_channel_sample_time(pin.channel(), self.sample_time); T::regs().cr1().modify(|reg| { reg.set_scan(false); reg.set_discen(false); }); T::regs().sqr1().modify(|reg| reg.set_l(0)); T::regs().cr2().modify(|reg| { reg.set_cont(false); reg.set_exttrig(true); reg.set_swstart(false); reg.set_extsel(crate::pac::adc::vals::Extsel::SWSTART); }); // Configure the channel to sample T::regs().sqr3().write(|reg| reg.set_sq(0, pin.channel())); self.convert() } fn set_channel_sample_time(ch: u8, sample_time: SampleTime) { let sample_time = sample_time.into(); if ch <= 9 { T::regs().smpr2().modify(|reg| reg.set_smp(ch as _, sample_time)); } else { T::regs().smpr1().modify(|reg| reg.set_smp((ch - 10) as _, sample_time)); } } }