// The v1c ethernet driver was ported to embassy from the awesome stm32-eth project (https://github.com/stm32-rs/stm32-eth). mod rx_desc; mod tx_desc; use core::marker::PhantomData; use core::sync::atomic::{fence, Ordering}; use embassy_hal_internal::{into_ref, PeripheralRef}; use stm32_metapac::eth::vals::{Apcs, Cr, Dm, DmaomrSr, Fes, Ftf, Ifg, MbProgress, Mw, Pbl, Rsf, St, Tsf}; pub(crate) use self::rx_desc::{RDes, RDesRing}; pub(crate) use self::tx_desc::{TDes, TDesRing}; use super::*; use crate::gpio::sealed::{AFType, Pin as __GpioPin}; use crate::gpio::AnyPin; use crate::interrupt::InterruptExt; #[cfg(eth_v1a)] use crate::pac::AFIO; #[cfg(any(eth_v1b, eth_v1c))] use crate::pac::SYSCFG; use crate::pac::{ETH, RCC}; use crate::{interrupt, Peripheral}; /// Interrupt handler. pub struct InterruptHandler {} impl interrupt::typelevel::Handler for InterruptHandler { unsafe fn on_interrupt() { WAKER.wake(); // TODO: Check and clear more flags let dma = ETH.ethernet_dma(); dma.dmasr().modify(|w| { w.set_ts(true); w.set_rs(true); w.set_nis(true); }); // Delay two peripheral's clock dma.dmasr().read(); dma.dmasr().read(); } } pub struct Ethernet<'d, T: Instance, P: PHY> { _peri: PeripheralRef<'d, T>, pub(crate) tx: TDesRing<'d>, pub(crate) rx: RDesRing<'d>, pins: [PeripheralRef<'d, AnyPin>; 9], pub(crate) phy: P, pub(crate) station_management: EthernetStationManagement, pub(crate) mac_addr: [u8; 6], } #[cfg(eth_v1a)] macro_rules! config_in_pins { ($($pin:ident),*) => { critical_section::with(|_| { $( // TODO properly create a set_as_input function $pin.set_as_af($pin.af_num(), AFType::Input); )* }) } } #[cfg(eth_v1a)] macro_rules! config_af_pins { ($($pin:ident),*) => { critical_section::with(|_| { $( // We are lucky here, this configures to max speed (50MHz) $pin.set_as_af($pin.af_num(), AFType::OutputPushPull); )* }) }; } #[cfg(any(eth_v1b, eth_v1c))] macro_rules! config_pins { ($($pin:ident),*) => { critical_section::with(|_| { $( $pin.set_as_af($pin.af_num(), AFType::OutputPushPull); $pin.set_speed(crate::gpio::Speed::VeryHigh); )* }) }; } impl<'d, T: Instance, P: PHY> Ethernet<'d, T, P> { /// safety: the returned instance is not leak-safe pub fn new( queue: &'d mut PacketQueue, peri: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding + 'd, ref_clk: impl Peripheral

> + 'd, mdio: impl Peripheral

> + 'd, mdc: impl Peripheral

> + 'd, crs: impl Peripheral

> + 'd, rx_d0: impl Peripheral

> + 'd, rx_d1: impl Peripheral

> + 'd, tx_d0: impl Peripheral

> + 'd, tx_d1: impl Peripheral

> + 'd, tx_en: impl Peripheral

> + 'd, phy: P, mac_addr: [u8; 6], phy_addr: u8, ) -> Self { into_ref!(peri, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); // Enable the necessary Clocks #[cfg(eth_v1a)] critical_section::with(|_| { RCC.apb2enr().modify(|w| w.set_afioen(true)); // Select RMII (Reduced Media Independent Interface) // Must be done prior to enabling peripheral clock AFIO.mapr().modify(|w| w.set_mii_rmii_sel(true)); RCC.ahbenr().modify(|w| { w.set_ethen(true); w.set_ethtxen(true); w.set_ethrxen(true); }); }); #[cfg(any(eth_v1b, eth_v1c))] critical_section::with(|_| { RCC.ahb1enr().modify(|w| { w.set_ethen(true); w.set_ethtxen(true); w.set_ethrxen(true); }); // RMII (Reduced Media Independent Interface) SYSCFG.pmc().modify(|w| w.set_mii_rmii_sel(true)); }); #[cfg(eth_v1a)] { config_in_pins!(ref_clk, rx_d0, rx_d1); config_af_pins!(mdio, mdc, tx_d0, tx_d1, tx_en); } #[cfg(any(eth_v1b, eth_v1c))] config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); // Reset and wait dma.dmabmr().modify(|w| w.set_sr(true)); while dma.dmabmr().read().sr() {} mac.maccr().modify(|w| { w.set_ifg(Ifg::IFG96); // inter frame gap 96 bit times w.set_apcs(Apcs::STRIP); // automatic padding and crc stripping w.set_fes(Fes::FES100); // fast ethernet speed w.set_dm(Dm::FULLDUPLEX); // full duplex // TODO: Carrier sense ? ECRSFD }); // Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core, // so the LR write must happen after the HR write. mac.maca0hr() .modify(|w| w.set_maca0h(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8))); mac.maca0lr().write(|w| { w.set_maca0l( u32::from(mac_addr[0]) | (u32::from(mac_addr[1]) << 8) | (u32::from(mac_addr[2]) << 16) | (u32::from(mac_addr[3]) << 24), ) }); // pause time mac.macfcr().modify(|w| w.set_pt(0x100)); // Transfer and Forward, Receive and Forward dma.dmaomr().modify(|w| { w.set_tsf(Tsf::STOREFORWARD); w.set_rsf(Rsf::STOREFORWARD); }); dma.dmabmr().modify(|w| { w.set_pbl(Pbl::PBL32) // programmable burst length - 32 ? }); // TODO MTU size setting not found for v1 ethernet, check if correct // NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called let hclk = unsafe { crate::rcc::get_freqs() }.ahb1; let hclk_mhz = hclk.0 / 1_000_000; // Set the MDC clock frequency in the range 1MHz - 2.5MHz let clock_range = match hclk_mhz { 0..=24 => panic!("Invalid HCLK frequency - should be at least 25 MHz."), 25..=34 => Cr::CR_20_35, // Divide by 16 35..=59 => Cr::CR_35_60, // Divide by 26 60..=99 => Cr::CR_60_100, // Divide by 42 100..=149 => Cr::CR_100_150, // Divide by 62 150..=216 => Cr::CR_150_168, // Divide by 102 _ => { panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider") } }; let pins = [ ref_clk.map_into(), mdio.map_into(), mdc.map_into(), crs.map_into(), rx_d0.map_into(), rx_d1.map_into(), tx_d0.map_into(), tx_d1.map_into(), tx_en.map_into(), ]; let mut this = Self { _peri: peri, pins, phy: phy, station_management: EthernetStationManagement { peri: PhantomData, clock_range: clock_range, phy_addr: phy_addr, }, mac_addr, tx: TDesRing::new(&mut queue.tx_desc, &mut queue.tx_buf), rx: RDesRing::new(&mut queue.rx_desc, &mut queue.rx_buf), }; fence(Ordering::SeqCst); let mac = ETH.ethernet_mac(); let dma = ETH.ethernet_dma(); mac.maccr().modify(|w| { w.set_re(true); w.set_te(true); }); dma.dmaomr().modify(|w| { w.set_ftf(Ftf::FLUSH); // flush transmit fifo (queue) w.set_st(St::STARTED); // start transmitting channel w.set_sr(DmaomrSr::STARTED); // start receiving channel }); this.rx.demand_poll(); // Enable interrupts dma.dmaier().modify(|w| { w.set_nise(true); w.set_rie(true); w.set_tie(true); }); this.phy.phy_reset(&mut this.station_management); this.phy.phy_init(&mut this.station_management); interrupt::ETH.unpend(); unsafe { interrupt::ETH.enable() }; this } } pub struct EthernetStationManagement { peri: PhantomData, clock_range: Cr, phy_addr: u8, } unsafe impl StationManagement for EthernetStationManagement { fn smi_read(&mut self, reg: u8) -> u16 { let mac = ETH.ethernet_mac(); mac.macmiiar().modify(|w| { w.set_pa(self.phy_addr); w.set_mr(reg); w.set_mw(Mw::READ); // read operation w.set_cr(self.clock_range); w.set_mb(MbProgress::BUSY); // indicate that operation is in progress }); while mac.macmiiar().read().mb() == MbProgress::BUSY {} mac.macmiidr().read().md() } fn smi_write(&mut self, reg: u8, val: u16) { let mac = ETH.ethernet_mac(); mac.macmiidr().write(|w| w.set_md(val)); mac.macmiiar().modify(|w| { w.set_pa(self.phy_addr); w.set_mr(reg); w.set_mw(Mw::WRITE); // write w.set_cr(self.clock_range); w.set_mb(MbProgress::BUSY); }); while mac.macmiiar().read().mb() == MbProgress::BUSY {} } } impl<'d, T: Instance, P: PHY> Drop for Ethernet<'d, T, P> { fn drop(&mut self) { let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); // Disable the TX DMA and wait for any previous transmissions to be completed dma.dmaomr().modify(|w| w.set_st(St::STOPPED)); // Disable MAC transmitter and receiver mac.maccr().modify(|w| { w.set_re(false); w.set_te(false); }); dma.dmaomr().modify(|w| w.set_sr(DmaomrSr::STOPPED)); critical_section::with(|_| { for pin in self.pins.iter_mut() { pin.set_as_disconnected(); } }) } }