use core::arch::asm; use core::marker::PhantomData; use cortex_m::peripheral::SCB; use embassy_executor::*; use embassy_time::Duration; use crate::interrupt; use crate::interrupt::typelevel::Interrupt; use crate::pac::EXTI; use crate::rcc::low_power_ready; use crate::time_driver::{pause_time, resume_time, time_until_next_alarm}; const THREAD_PENDER: usize = usize::MAX; const THRESHOLD: Duration = Duration::from_millis(500); use crate::rtc::{Rtc, RtcInstant}; static mut EXECUTOR: Option = None; foreach_interrupt! { (RTC, rtc, $block:ident, WKUP, $irq:ident) => { #[interrupt] unsafe fn $irq() { unsafe { EXECUTOR.as_mut().unwrap() }.on_wakeup_irq(); } }; } pub fn stop_with_rtc(rtc: &'static Rtc) { unsafe { EXECUTOR.as_mut().unwrap() }.stop_with_rtc(rtc) } pub fn start_wakeup_alarm(requested_duration: embassy_time::Duration) -> RtcInstant { unsafe { EXECUTOR.as_mut().unwrap() } .rtc .unwrap() .start_wakeup_alarm(requested_duration) } pub fn stop_wakeup_alarm() -> RtcInstant { unsafe { EXECUTOR.as_mut().unwrap() }.rtc.unwrap().stop_wakeup_alarm() } /// Thread mode executor, using WFE/SEV. /// /// This is the simplest and most common kind of executor. It runs on /// thread mode (at the lowest priority level), and uses the `WFE` ARM instruction /// to sleep when it has no more work to do. When a task is woken, a `SEV` instruction /// is executed, to make the `WFE` exit from sleep and poll the task. /// /// This executor allows for ultra low power consumption for chips where `WFE` /// triggers low-power sleep without extra steps. If your chip requires extra steps, /// you may use [`raw::Executor`] directly to program custom behavior. pub struct Executor { inner: raw::Executor, not_send: PhantomData<*mut ()>, scb: SCB, pub(self) rtc: Option<&'static Rtc>, stop_time: embassy_time::Duration, next_alarm: embassy_time::Duration, last_stop: Option, } impl Executor { /// Create a new Executor. pub fn new() -> &'static mut Self { unsafe { assert!(EXECUTOR.is_none()); EXECUTOR = Some(Self { inner: raw::Executor::new(THREAD_PENDER as *mut ()), not_send: PhantomData, scb: cortex_m::Peripherals::steal().SCB, rtc: None, stop_time: Duration::from_ticks(0), next_alarm: Duration::from_ticks(u64::MAX), last_stop: None, }); EXECUTOR.as_mut().unwrap() } } unsafe fn on_wakeup_irq(&mut self) { trace!("low power: one wakekup irq"); self.rtc.unwrap().clear_wakeup_alarm(); // Self::get_scb().set_sleeponexit(); // // return; // // let elapsed = RTC_INSTANT.take().unwrap() - stop_wakeup_alarm(); // // STOP_TIME += elapsed; // // let to_next = NEXT_ALARM - STOP_TIME; // let to_next = Duration::from_secs(3); // // trace!("on wakeup irq: to next: {}", to_next); // if to_next > THRESHOLD { // trace!("start wakeup alarm"); // RTC_INSTANT.replace(start_wakeup_alarm(to_next)); // // trace!("set sleeponexit"); // Self::get_scb().set_sleeponexit(); // } else { // Self::get_scb().clear_sleeponexit(); // Self::get_scb().clear_sleepdeep(); // } } pub(self) fn stop_with_rtc(&mut self, rtc: &'static Rtc) { assert!(self.rtc.is_none()); crate::interrupt::typelevel::RTC_WKUP::unpend(); unsafe { crate::interrupt::typelevel::RTC_WKUP::enable() }; EXTI.rtsr(0).modify(|w| w.set_line(22, true)); EXTI.imr(0).modify(|w| w.set_line(22, true)); self.rtc = Some(rtc); } fn configure_pwr(&self) { // defeat the borrow checker let s = unsafe { EXECUTOR.as_mut().unwrap() }; // trace!("configure_pwr"); // // if !low_power_ready() { // trace!("configure_pwr: low power not ready"); // return; // } // // let time_until_next_alarm = time_until_next_alarm(); // if time_until_next_alarm < THRESHOLD { // trace!("configure_pwr: not enough time until next alarm"); // return; // } // // unsafe { // NEXT_ALARM = time_until_next_alarm; // if RTC_INSTANT.is_none() { // RTC_INSTANT = Some(start_wakeup_alarm(time_until_next_alarm)) // } // }; // // // return; // // pause_time(); // // trace!("enter stop..."); // // Self::get_scb().set_sleepdeep(); } /// Run the executor. /// /// The `init` closure is called with a [`Spawner`] that spawns tasks on /// this executor. Use it to spawn the initial task(s). After `init` returns, /// the executor starts running the tasks. /// /// To spawn more tasks later, you may keep copies of the [`Spawner`] (it is `Copy`), /// for example by passing it as an argument to the initial tasks. /// /// This function requires `&'static mut self`. This means you have to store the /// Executor instance in a place where it'll live forever and grants you mutable /// access. There's a few ways to do this: /// /// - a [StaticCell](https://docs.rs/static_cell/latest/static_cell/) (safe) /// - a `static mut` (unsafe) /// - a local variable in a function you know never returns (like `fn main() -> !`), upgrading its lifetime with `transmute`. (unsafe) /// /// This function never returns. pub fn run(&'static mut self, init: impl FnOnce(Spawner)) -> ! { init(self.inner.spawner()); loop { unsafe { self.inner.poll(); self.configure_pwr(); asm!("wfe"); }; } } }