//! General-purpose Input/Output (GPIO) #![macro_use] use core::convert::Infallible; use critical_section::CriticalSection; use embassy_hal_internal::{impl_peripheral, into_ref, PeripheralRef}; use crate::pac::gpio::{self, vals}; use crate::{pac, peripherals, Peripheral}; /// GPIO flexible pin. /// /// This pin can either be a disconnected, input, or output pin, or both. The level register bit will remain /// set while not in output mode, so the pin's level will be 'remembered' when it is not in output /// mode. pub struct Flex<'d, T: Pin> { pub(crate) pin: PeripheralRef<'d, T>, } impl<'d, T: Pin> Flex<'d, T> { /// Wrap the pin in a `Flex`. /// /// The pin remains disconnected. The initial output level is unspecified, but can be changed /// before the pin is put into output mode. /// #[inline] pub fn new(pin: impl Peripheral

+ 'd) -> Self { into_ref!(pin); // Pin will be in disconnected state. Self { pin } } /// Type-erase (degrade) this pin into an `AnyPin`. /// /// This converts pin singletons (`PA5`, `PB6`, ...), which /// are all different types, into the same type. It is useful for /// creating arrays of pins, or avoiding generics. #[inline] pub fn degrade(self) -> Flex<'d, AnyPin> { // Safety: We are about to drop the other copy of this pin, so // this clone is safe. let pin = unsafe { self.pin.clone_unchecked() }; // We don't want to run the destructor here, because that would // deconfigure the pin. core::mem::forget(self); Flex { pin: pin.map_into::(), } } /// Put the pin into input mode. #[inline] pub fn set_as_input(&mut self, pull: Pull) { critical_section::with(|_| { let r = self.pin.block(); let n = self.pin.pin() as usize; #[cfg(gpio_v1)] { let cnf = match pull { Pull::Up => { r.bsrr().write(|w| w.set_bs(n, true)); vals::CnfIn::PULL } Pull::Down => { r.bsrr().write(|w| w.set_br(n, true)); vals::CnfIn::PULL } Pull::None => vals::CnfIn::FLOATING, }; let crlh = if n < 8 { 0 } else { 1 }; r.cr(crlh).modify(|w| { w.set_mode(n % 8, vals::Mode::INPUT); w.set_cnf_in(n % 8, cnf); }); } #[cfg(gpio_v2)] { r.pupdr().modify(|w| w.set_pupdr(n, pull.into())); r.otyper().modify(|w| w.set_ot(n, vals::Ot::PUSHPULL)); r.moder().modify(|w| w.set_moder(n, vals::Moder::INPUT)); } }); } /// Put the pin into output mode. /// /// The pin level will be whatever was set before (or low by default). If you want it to begin /// at a specific level, call `set_high`/`set_low` on the pin first. #[inline] pub fn set_as_output(&mut self, speed: Speed) { critical_section::with(|_| { let r = self.pin.block(); let n = self.pin.pin() as usize; #[cfg(gpio_v1)] { let crlh = if n < 8 { 0 } else { 1 }; r.cr(crlh).modify(|w| { w.set_mode(n % 8, speed.into()); w.set_cnf_out(n % 8, vals::CnfOut::PUSHPULL); }); } #[cfg(gpio_v2)] { r.pupdr().modify(|w| w.set_pupdr(n, vals::Pupdr::FLOATING)); r.otyper().modify(|w| w.set_ot(n, vals::Ot::PUSHPULL)); self.pin.set_speed(speed); r.moder().modify(|w| w.set_moder(n, vals::Moder::OUTPUT)); } }); } /// Put the pin into input + output mode. /// /// This is commonly used for "open drain" mode. /// the hardware will drive the line low if you set it to low, and will leave it floating if you set /// it to high, in which case you can read the input to figure out whether another device /// is driving the line low. /// /// The pin level will be whatever was set before (or low by default). If you want it to begin /// at a specific level, call `set_high`/`set_low` on the pin first. #[inline] pub fn set_as_input_output(&mut self, speed: Speed, pull: Pull) { critical_section::with(|_| { let r = self.pin.block(); let n = self.pin.pin() as usize; #[cfg(gpio_v1)] { let crlh = if n < 8 { 0 } else { 1 }; match pull { Pull::Up => r.bsrr().write(|w| w.set_bs(n, true)), Pull::Down => r.bsrr().write(|w| w.set_br(n, true)), Pull::None => {} } r.cr(crlh).modify(|w| w.set_mode(n % 8, speed.into())); r.cr(crlh).modify(|w| w.set_cnf_out(n % 8, vals::CnfOut::OPENDRAIN)); } #[cfg(gpio_v2)] { r.pupdr().modify(|w| w.set_pupdr(n, pull.into())); r.otyper().modify(|w| w.set_ot(n, vals::Ot::OPENDRAIN)); self.pin.set_speed(speed); r.moder().modify(|w| w.set_moder(n, vals::Moder::OUTPUT)); } }); } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { !self.ref_is_low() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.ref_is_low() } #[inline] pub(crate) fn ref_is_low(&self) -> bool { let state = self.pin.block().idr().read().idr(self.pin.pin() as _); state == vals::Idr::LOW } /// Get the current pin input level. #[inline] pub fn get_level(&mut self) -> Level { self.is_high().into() } /// Get whether the output level is set to high. #[inline] pub fn is_set_high(&mut self) -> bool { !self.ref_is_set_low() } /// Get whether the output level is set to low. #[inline] pub fn is_set_low(&mut self) -> bool { self.ref_is_set_low() } #[inline] pub(crate) fn ref_is_set_low(&self) -> bool { let state = self.pin.block().odr().read().odr(self.pin.pin() as _); state == vals::Odr::LOW } /// Get the current output level. #[inline] pub fn get_output_level(&mut self) -> Level { self.is_set_high().into() } /// Set the output as high. #[inline] pub fn set_high(&mut self) { self.pin.set_high(); } /// Set the output as low. #[inline] pub fn set_low(&mut self) { self.pin.set_low(); } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { match level { Level::Low => self.pin.set_low(), Level::High => self.pin.set_high(), } } /// Toggle the output level. #[inline] pub fn toggle(&mut self) { if self.is_set_low() { self.set_high() } else { self.set_low() } } } impl<'d, T: Pin> Drop for Flex<'d, T> { #[inline] fn drop(&mut self) { critical_section::with(|_| { let r = self.pin.block(); let n = self.pin.pin() as usize; #[cfg(gpio_v1)] { let crlh = if n < 8 { 0 } else { 1 }; r.cr(crlh).modify(|w| { w.set_mode(n % 8, vals::Mode::INPUT); w.set_cnf_in(n % 8, vals::CnfIn::FLOATING); }); } #[cfg(gpio_v2)] { r.pupdr().modify(|w| w.set_pupdr(n, vals::Pupdr::FLOATING)); r.moder().modify(|w| w.set_moder(n, vals::Moder::INPUT)); } }); } } /// Pull setting for an input. #[derive(Debug, Eq, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Pull { /// No pull None, /// Pull up Up, /// Pull down Down, } #[cfg(gpio_v2)] impl From for vals::Pupdr { fn from(pull: Pull) -> Self { use Pull::*; match pull { None => vals::Pupdr::FLOATING, Up => vals::Pupdr::PULLUP, Down => vals::Pupdr::PULLDOWN, } } } /// Speed settings /// /// These vary dpeending on the chip, ceck the reference manual or datasheet for details. #[allow(missing_docs)] #[derive(Debug, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Speed { Low, Medium, #[cfg(not(any(syscfg_f0, gpio_v1)))] High, VeryHigh, } #[cfg(gpio_v1)] impl From for vals::Mode { fn from(speed: Speed) -> Self { use Speed::*; match speed { Low => vals::Mode::OUTPUT2MHZ, Medium => vals::Mode::OUTPUT10MHZ, VeryHigh => vals::Mode::OUTPUT50MHZ, } } } #[cfg(gpio_v2)] impl From for vals::Ospeedr { fn from(speed: Speed) -> Self { use Speed::*; match speed { Low => vals::Ospeedr::LOWSPEED, Medium => vals::Ospeedr::MEDIUMSPEED, #[cfg(not(syscfg_f0))] High => vals::Ospeedr::HIGHSPEED, VeryHigh => vals::Ospeedr::VERYHIGHSPEED, } } } /// GPIO input driver. pub struct Input<'d, T: Pin> { pub(crate) pin: Flex<'d, T>, } impl<'d, T: Pin> Input<'d, T> { /// Create GPIO input driver for a [Pin] with the provided [Pull] configuration. #[inline] pub fn new(pin: impl Peripheral

+ 'd, pull: Pull) -> Self { let mut pin = Flex::new(pin); pin.set_as_input(pull); Self { pin } } /// Type-erase (degrade) this pin into an `AnyPin`. /// /// This converts pin singletons (`PA5`, `PB6`, ...), which /// are all different types, into the same type. It is useful for /// creating arrays of pins, or avoiding generics. #[inline] pub fn degrade(self) -> Input<'d, AnyPin> { Input { pin: self.pin.degrade(), } } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { self.pin.is_high() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.pin.is_low() } /// Get the current pin input level. #[inline] pub fn get_level(&mut self) -> Level { self.pin.get_level() } } /// Digital input or output level. #[derive(Debug, Eq, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Level { /// Low Low, /// High High, } impl From for Level { fn from(val: bool) -> Self { match val { true => Self::High, false => Self::Low, } } } impl From for bool { fn from(level: Level) -> bool { match level { Level::Low => false, Level::High => true, } } } /// GPIO output driver. /// /// Note that pins will **return to their floating state** when `Output` is dropped. /// If pins should retain their state indefinitely, either keep ownership of the /// `Output`, or pass it to [`core::mem::forget`]. pub struct Output<'d, T: Pin> { pub(crate) pin: Flex<'d, T>, } impl<'d, T: Pin> Output<'d, T> { /// Create GPIO output driver for a [Pin] with the provided [Level] and [Speed] configuration. #[inline] pub fn new(pin: impl Peripheral

+ 'd, initial_output: Level, speed: Speed) -> Self { let mut pin = Flex::new(pin); match initial_output { Level::High => pin.set_high(), Level::Low => pin.set_low(), } pin.set_as_output(speed); Self { pin } } /// Type-erase (degrade) this pin into an `AnyPin`. /// /// This converts pin singletons (`PA5`, `PB6`, ...), which /// are all different types, into the same type. It is useful for /// creating arrays of pins, or avoiding generics. #[inline] pub fn degrade(self) -> Output<'d, AnyPin> { Output { pin: self.pin.degrade(), } } /// Set the output as high. #[inline] pub fn set_high(&mut self) { self.pin.set_high(); } /// Set the output as low. #[inline] pub fn set_low(&mut self) { self.pin.set_low(); } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { self.pin.set_level(level) } /// Is the output pin set as high? #[inline] pub fn is_set_high(&mut self) -> bool { self.pin.is_set_high() } /// Is the output pin set as low? #[inline] pub fn is_set_low(&mut self) -> bool { self.pin.is_set_low() } /// What level output is set to #[inline] pub fn get_output_level(&mut self) -> Level { self.pin.get_output_level() } /// Toggle pin output #[inline] pub fn toggle(&mut self) { self.pin.toggle(); } } /// GPIO output open-drain driver. /// /// Note that pins will **return to their floating state** when `OutputOpenDrain` is dropped. /// If pins should retain their state indefinitely, either keep ownership of the /// `OutputOpenDrain`, or pass it to [`core::mem::forget`]. pub struct OutputOpenDrain<'d, T: Pin> { pub(crate) pin: Flex<'d, T>, } impl<'d, T: Pin> OutputOpenDrain<'d, T> { /// Create a new GPIO open drain output driver for a [Pin] with the provided [Level] and [Speed], [Pull] configuration. #[inline] pub fn new(pin: impl Peripheral

+ 'd, initial_output: Level, speed: Speed, pull: Pull) -> Self { let mut pin = Flex::new(pin); match initial_output { Level::High => pin.set_high(), Level::Low => pin.set_low(), } pin.set_as_input_output(speed, pull); Self { pin } } /// Type-erase (degrade) this pin into an `AnyPin`. /// /// This converts pin singletons (`PA5`, `PB6`, ...), which /// are all different types, into the same type. It is useful for /// creating arrays of pins, or avoiding generics. #[inline] pub fn degrade(self) -> Output<'d, AnyPin> { Output { pin: self.pin.degrade(), } } /// Get whether the pin input level is high. #[inline] pub fn is_high(&mut self) -> bool { !self.pin.is_low() } /// Get whether the pin input level is low. #[inline] pub fn is_low(&mut self) -> bool { self.pin.is_low() } /// Get the current pin input level. #[inline] pub fn get_level(&mut self) -> Level { self.pin.get_level() } /// Set the output as high. #[inline] pub fn set_high(&mut self) { self.pin.set_high(); } /// Set the output as low. #[inline] pub fn set_low(&mut self) { self.pin.set_low(); } /// Set the output level. #[inline] pub fn set_level(&mut self, level: Level) { self.pin.set_level(level); } /// Get whether the output level is set to high. #[inline] pub fn is_set_high(&mut self) -> bool { self.pin.is_set_high() } /// Get whether the output level is set to low. #[inline] pub fn is_set_low(&mut self) -> bool { self.pin.is_set_low() } /// Get the current output level. #[inline] pub fn get_output_level(&mut self) -> Level { self.pin.get_output_level() } /// Toggle pin output #[inline] pub fn toggle(&mut self) { self.pin.toggle() } } /// GPIO output type pub enum OutputType { /// Drive the pin both high or low. PushPull, /// Drive the pin low, or don't drive it at all if the output level is high. OpenDrain, } impl From for sealed::AFType { fn from(value: OutputType) -> Self { match value { OutputType::OpenDrain => sealed::AFType::OutputOpenDrain, OutputType::PushPull => sealed::AFType::OutputPushPull, } } } #[allow(missing_docs)] pub(crate) mod sealed { use super::*; /// Alternate function type settings #[derive(Debug, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum AFType { /// Input Input, /// Output, drive the pin both high or low. OutputPushPull, /// Output, drive the pin low, or don't drive it at all if the output level is high. OutputOpenDrain, } pub trait Pin { fn pin_port(&self) -> u8; #[inline] fn _pin(&self) -> u8 { self.pin_port() % 16 } #[inline] fn _port(&self) -> u8 { self.pin_port() / 16 } #[inline] fn block(&self) -> gpio::Gpio { pac::GPIO(self._port() as _) } /// Set the output as high. #[inline] fn set_high(&self) { let n = self._pin() as _; self.block().bsrr().write(|w| w.set_bs(n, true)); } /// Set the output as low. #[inline] fn set_low(&self) { let n = self._pin() as _; self.block().bsrr().write(|w| w.set_br(n, true)); } #[inline] fn set_as_af(&self, af_num: u8, af_type: AFType) { self.set_as_af_pull(af_num, af_type, Pull::None); } #[cfg(gpio_v1)] #[inline] fn set_as_af_pull(&self, _af_num: u8, af_type: AFType, pull: Pull) { // F1 uses the AFIO register for remapping. // For now, this is not implemented, so af_num is ignored // _af_num should be zero here, since it is not set by stm32-data let r = self.block(); let n = self._pin() as usize; let crlh = if n < 8 { 0 } else { 1 }; match af_type { AFType::Input => { let cnf = match pull { Pull::Up => { r.bsrr().write(|w| w.set_bs(n, true)); vals::CnfIn::PULL } Pull::Down => { r.bsrr().write(|w| w.set_br(n, true)); vals::CnfIn::PULL } Pull::None => vals::CnfIn::FLOATING, }; r.cr(crlh).modify(|w| { w.set_mode(n % 8, vals::Mode::INPUT); w.set_cnf_in(n % 8, cnf); }); } AFType::OutputPushPull => { r.cr(crlh).modify(|w| { w.set_mode(n % 8, vals::Mode::OUTPUT50MHZ); w.set_cnf_out(n % 8, vals::CnfOut::ALTPUSHPULL); }); } AFType::OutputOpenDrain => { r.cr(crlh).modify(|w| { w.set_mode(n % 8, vals::Mode::OUTPUT50MHZ); w.set_cnf_out(n % 8, vals::CnfOut::ALTOPENDRAIN); }); } } } #[cfg(gpio_v2)] #[inline] fn set_as_af_pull(&self, af_num: u8, af_type: AFType, pull: Pull) { let pin = self._pin() as usize; let block = self.block(); block.afr(pin / 8).modify(|w| w.set_afr(pin % 8, af_num)); match af_type { AFType::Input => {} AFType::OutputPushPull => block.otyper().modify(|w| w.set_ot(pin, vals::Ot::PUSHPULL)), AFType::OutputOpenDrain => block.otyper().modify(|w| w.set_ot(pin, vals::Ot::OPENDRAIN)), } block.pupdr().modify(|w| w.set_pupdr(pin, pull.into())); block.moder().modify(|w| w.set_moder(pin, vals::Moder::ALTERNATE)); } #[inline] fn set_as_analog(&self) { let pin = self._pin() as usize; let block = self.block(); #[cfg(gpio_v1)] { let crlh = if pin < 8 { 0 } else { 1 }; block.cr(crlh).modify(|w| { w.set_mode(pin % 8, vals::Mode::INPUT); w.set_cnf_in(pin % 8, vals::CnfIn::ANALOG); }); } #[cfg(gpio_v2)] block.moder().modify(|w| w.set_moder(pin, vals::Moder::ANALOG)); } /// Set the pin as "disconnected", ie doing nothing and consuming the lowest /// amount of power possible. /// /// This is currently the same as set_as_analog but is semantically different really. /// Drivers should set_as_disconnected pins when dropped. #[inline] fn set_as_disconnected(&self) { self.set_as_analog(); } #[inline] fn set_speed(&self, speed: Speed) { let pin = self._pin() as usize; #[cfg(gpio_v1)] { let crlh = if pin < 8 { 0 } else { 1 }; self.block().cr(crlh).modify(|w| { w.set_mode(pin % 8, speed.into()); }); } #[cfg(gpio_v2)] self.block().ospeedr().modify(|w| w.set_ospeedr(pin, speed.into())); } } } /// GPIO pin trait. pub trait Pin: Peripheral

+ Into + sealed::Pin + Sized + 'static { /// EXTI channel assigned to this pin. /// /// For example, PC4 uses EXTI4. #[cfg(feature = "exti")] type ExtiChannel: crate::exti::Channel; /// Number of the pin within the port (0..31) #[inline] fn pin(&self) -> u8 { self._pin() } /// Port of the pin #[inline] fn port(&self) -> u8 { self._port() } /// Type-erase (degrade) this pin into an `AnyPin`. /// /// This converts pin singletons (`PA5`, `PB6`, ...), which /// are all different types, into the same type. It is useful for /// creating arrays of pins, or avoiding generics. #[inline] fn degrade(self) -> AnyPin { AnyPin { pin_port: self.pin_port(), } } } /// Type-erased GPIO pin pub struct AnyPin { pin_port: u8, } impl AnyPin { /// Unsafely create an `AnyPin` from a pin+port number. /// /// `pin_port` is `port_num * 16 + pin_num`, where `port_num` is 0 for port `A`, 1 for port `B`, etc... #[inline] pub unsafe fn steal(pin_port: u8) -> Self { Self { pin_port } } #[inline] fn _port(&self) -> u8 { self.pin_port / 16 } /// Get the GPIO register block for this pin. #[cfg(feature = "unstable-pac")] #[inline] pub fn block(&self) -> gpio::Gpio { pac::GPIO(self._port() as _) } } impl_peripheral!(AnyPin); impl Pin for AnyPin { #[cfg(feature = "exti")] type ExtiChannel = crate::exti::AnyChannel; } impl sealed::Pin for AnyPin { #[inline] fn pin_port(&self) -> u8 { self.pin_port } } // ==================== foreach_pin!( ($pin_name:ident, $port_name:ident, $port_num:expr, $pin_num:expr, $exti_ch:ident) => { impl Pin for peripherals::$pin_name { #[cfg(feature = "exti")] type ExtiChannel = peripherals::$exti_ch; } impl sealed::Pin for peripherals::$pin_name { #[inline] fn pin_port(&self) -> u8 { $port_num * 16 + $pin_num } } impl From for AnyPin { fn from(x: peripherals::$pin_name) -> Self { x.degrade() } } }; ); pub(crate) unsafe fn init(_cs: CriticalSection) { #[cfg(afio)] ::enable_and_reset_with_cs(_cs); crate::_generated::init_gpio(); // Setting this bit is mandatory to use PG[15:2]. #[cfg(stm32u5)] crate::pac::PWR.svmcr().modify(|w| { w.set_io2sv(true); w.set_io2vmen(true); }); } impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Input<'d, T> { type Error = Infallible; #[inline] fn is_high(&self) -> Result { Ok(!self.pin.ref_is_low()) } #[inline] fn is_low(&self) -> Result { Ok(self.pin.ref_is_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Output<'d, T> { type Error = Infallible; #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { self.set_high(); Ok(()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { self.set_low(); Ok(()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Output<'d, T> { #[inline] fn is_set_high(&self) -> Result { Ok(!self.pin.ref_is_set_low()) } /// Is the output pin set as low? #[inline] fn is_set_low(&self) -> Result { Ok(self.pin.ref_is_set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Output<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { self.toggle(); Ok(()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for OutputOpenDrain<'d, T> { type Error = Infallible; #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { self.set_high(); Ok(()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { self.set_low(); Ok(()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for OutputOpenDrain<'d, T> { #[inline] fn is_set_high(&self) -> Result { Ok(!self.pin.ref_is_set_low()) } /// Is the output pin set as low? #[inline] fn is_set_low(&self) -> Result { Ok(self.pin.ref_is_set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for OutputOpenDrain<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { self.toggle(); Ok(()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::InputPin for Flex<'d, T> { type Error = Infallible; #[inline] fn is_high(&self) -> Result { Ok(!self.ref_is_low()) } #[inline] fn is_low(&self) -> Result { Ok(self.ref_is_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::OutputPin for Flex<'d, T> { type Error = Infallible; #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { self.set_high(); Ok(()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { self.set_low(); Ok(()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::StatefulOutputPin for Flex<'d, T> { #[inline] fn is_set_high(&self) -> Result { Ok(!self.ref_is_set_low()) } /// Is the output pin set as low? #[inline] fn is_set_low(&self) -> Result { Ok(self.ref_is_set_low()) } } impl<'d, T: Pin> embedded_hal_02::digital::v2::ToggleableOutputPin for Flex<'d, T> { type Error = Infallible; #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { self.toggle(); Ok(()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Input<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Input<'d, T> { #[inline] fn is_high(&mut self) -> Result { Ok(self.is_high()) } #[inline] fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Output<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Output<'d, T> { #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Output<'d, T> { #[inline] fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } /// Is the output pin set as low? #[inline] fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Output<'d, T> { #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for OutputOpenDrain<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for OutputOpenDrain<'d, T> { #[inline] fn is_high(&mut self) -> Result { Ok(self.is_high()) } #[inline] fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for OutputOpenDrain<'d, T> { #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for OutputOpenDrain<'d, T> { #[inline] fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } /// Is the output pin set as low? #[inline] fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for OutputOpenDrain<'d, T> { #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_1::digital::InputPin for Flex<'d, T> { #[inline] fn is_high(&mut self) -> Result { Ok(self.is_high()) } #[inline] fn is_low(&mut self) -> Result { Ok(self.is_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::OutputPin for Flex<'d, T> { #[inline] fn set_high(&mut self) -> Result<(), Self::Error> { Ok(self.set_high()) } #[inline] fn set_low(&mut self) -> Result<(), Self::Error> { Ok(self.set_low()) } } impl<'d, T: Pin> embedded_hal_1::digital::ToggleableOutputPin for Flex<'d, T> { #[inline] fn toggle(&mut self) -> Result<(), Self::Error> { Ok(self.toggle()) } } impl<'d, T: Pin> embedded_hal_1::digital::ErrorType for Flex<'d, T> { type Error = Infallible; } impl<'d, T: Pin> embedded_hal_1::digital::StatefulOutputPin for Flex<'d, T> { #[inline] fn is_set_high(&mut self) -> Result { Ok(self.is_set_high()) } /// Is the output pin set as low? #[inline] fn is_set_low(&mut self) -> Result { Ok(self.is_set_low()) } } /// Low-level GPIO manipulation. #[cfg(feature = "unstable-pac")] pub mod low_level { pub use super::sealed::*; }