#![macro_use] use crate::dma::NoDma; use crate::spi::{ check_error_flags, Error, Instance, RegsExt, RxDmaChannel, TxDmaChannel, WordSize, }; use core::ptr; pub use embedded_hal::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3}; use futures::future::join3; use super::Spi; impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> { pub(super) async fn write_dma_u8(&mut self, write: &[u8]) -> Result<(), Error> where Tx: TxDmaChannel, { self.set_word_size(WordSize::EightBit); unsafe { T::regs().cr1().modify(|w| { w.set_spe(false); }); } let request = self.txdma.request(); let dst = T::regs().tx_ptr(); let f = self.txdma.write(request, write, dst); unsafe { T::regs().cfg1().modify(|reg| { reg.set_txdmaen(true); }); T::regs().cr1().modify(|w| { w.set_spe(true); }); T::regs().cr1().modify(|w| { w.set_cstart(true); }); } f.await; unsafe { T::regs().cfg1().modify(|reg| { reg.set_txdmaen(false); }); T::regs().cr1().modify(|w| { w.set_spe(false); }); } Ok(()) } pub(super) async fn read_dma_u8(&mut self, read: &mut [u8]) -> Result<(), Error> where Tx: TxDmaChannel, Rx: RxDmaChannel, { self.set_word_size(WordSize::EightBit); unsafe { T::regs().cr1().modify(|w| { w.set_spe(false); }); T::regs().cfg1().modify(|reg| { reg.set_rxdmaen(true); }); } let clock_byte_count = read.len(); let rx_request = self.rxdma.request(); let rx_src = T::regs().rx_ptr(); let rx_f = self.rxdma.read(rx_request, rx_src, read); let tx_request = self.txdma.request(); let tx_dst = T::regs().tx_ptr(); let clock_byte = 0x00; let tx_f = self .txdma .write_x(tx_request, &clock_byte, clock_byte_count, tx_dst); unsafe { T::regs().cfg1().modify(|reg| { reg.set_txdmaen(true); }); T::regs().cr1().modify(|w| { w.set_spe(true); }); T::regs().cr1().modify(|w| { w.set_cstart(true); }); } join3(tx_f, rx_f, Self::wait_for_idle()).await; unsafe { T::regs().cfg1().modify(|reg| { reg.set_rxdmaen(false); reg.set_txdmaen(false); }); T::regs().cr1().modify(|w| { w.set_spe(false); }); } Ok(()) } pub(super) async fn read_write_dma_u8(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> where Tx: TxDmaChannel, Rx: RxDmaChannel, { assert!(read.len() >= write.len()); self.set_word_size(WordSize::EightBit); unsafe { T::regs().cr1().modify(|w| { w.set_spe(false); }); T::regs().cfg1().modify(|reg| { reg.set_rxdmaen(true); }); // Flush the read buffer to avoid errornous data from being read while T::regs().sr().read().rxp() { let _ = T::regs().rxdr().read(); } } let rx_request = self.rxdma.request(); let rx_src = T::regs().rx_ptr(); let rx_f = self .rxdma .read(rx_request, rx_src, &mut read[0..write.len()]); let tx_request = self.txdma.request(); let tx_dst = T::regs().tx_ptr(); let tx_f = self.txdma.write(tx_request, write, tx_dst); unsafe { T::regs().cfg1().modify(|reg| { reg.set_txdmaen(true); }); T::regs().cr1().modify(|w| { w.set_spe(true); }); T::regs().cr1().modify(|w| { w.set_cstart(true); }); } join3(tx_f, rx_f, Self::wait_for_idle()).await; unsafe { T::regs().cfg1().modify(|reg| { reg.set_rxdmaen(false); reg.set_txdmaen(false); }); T::regs().cr1().modify(|w| { w.set_spe(false); }); } Ok(()) } async fn wait_for_idle() { unsafe { while !T::regs().sr().read().txc() { // spin } while T::regs().sr().read().rxplvl().0 > 0 { // spin } } } } impl<'d, T: Instance> embedded_hal::blocking::spi::Write for Spi<'d, T, NoDma, NoDma> { type Error = Error; fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> { self.set_word_size(WordSize::EightBit); let regs = T::regs(); for word in words.iter() { while unsafe { !regs.sr().read().txp() } { // spin } unsafe { ptr::write_volatile(regs.tx_ptr(), *word); regs.cr1().modify(|reg| reg.set_cstart(true)); } loop { let sr = unsafe { regs.sr().read() }; if sr.tifre() { return Err(Error::Framing); } if sr.ovr() { return Err(Error::Overrun); } if sr.crce() { return Err(Error::Crc); } if !sr.txp() { // loop waiting for TXE continue; } break; } unsafe { // discard read to prevent pverrun. let _: u8 = ptr::read_volatile(T::regs().rx_ptr()); } } while unsafe { !regs.sr().read().txc() } { // spin } Ok(()) } } impl<'d, T: Instance> embedded_hal::blocking::spi::Transfer for Spi<'d, T, NoDma, NoDma> { type Error = Error; fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> { self.set_word_size(WordSize::EightBit); let regs = T::regs(); for word in words.iter_mut() { unsafe { regs.cr1().modify(|reg| { reg.set_ssi(false); }); } while unsafe { !regs.sr().read().txp() } { // spin } unsafe { ptr::write_volatile(T::regs().tx_ptr(), *word); regs.cr1().modify(|reg| reg.set_cstart(true)); } loop { let sr = unsafe { regs.sr().read() }; if sr.rxp() { break; } check_error_flags(sr)?; } unsafe { *word = ptr::read_volatile(T::regs().rx_ptr()); } let sr = unsafe { regs.sr().read() }; check_error_flags(sr)?; } Ok(words) } } impl<'d, T: Instance> embedded_hal::blocking::spi::Write for Spi<'d, T, NoDma, NoDma> { type Error = Error; fn write(&mut self, words: &[u16]) -> Result<(), Self::Error> { self.set_word_size(WordSize::SixteenBit); let regs = T::regs(); for word in words.iter() { while unsafe { !regs.sr().read().txp() } { // spin } unsafe { let txdr = regs.txdr().ptr() as *mut u16; ptr::write_volatile(txdr, *word); regs.cr1().modify(|reg| reg.set_cstart(true)); } loop { let sr = unsafe { regs.sr().read() }; check_error_flags(sr)?; if !sr.txp() { // loop waiting for TXE continue; } break; } unsafe { let rxdr = regs.rxdr().ptr() as *const u8; // discard read to prevent pverrun. let _ = ptr::read_volatile(rxdr); } } while unsafe { !regs.sr().read().txc() } { // spin } Ok(()) } } impl<'d, T: Instance> embedded_hal::blocking::spi::Transfer for Spi<'d, T, NoDma, NoDma> { type Error = Error; fn transfer<'w>(&mut self, words: &'w mut [u16]) -> Result<&'w [u16], Self::Error> { self.set_word_size(WordSize::SixteenBit); let regs = T::regs(); for word in words.iter_mut() { while unsafe { !regs.sr().read().txp() } { // spin } unsafe { let txdr = regs.txdr().ptr() as *mut u16; ptr::write_volatile(txdr, *word); regs.cr1().modify(|reg| reg.set_cstart(true)); } loop { let sr = unsafe { regs.sr().read() }; if sr.rxp() { break; } check_error_flags(sr)?; } unsafe { let rxdr = regs.rxdr().ptr() as *const u16; *word = ptr::read_volatile(rxdr); } let sr = unsafe { regs.sr().read() }; check_error_flags(sr)?; } Ok(words) } }