use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash}; use crate::{Partition, State, BOOT_MAGIC, SWAP_MAGIC}; /// Errors returned by bootloader #[derive(PartialEq, Eq, Debug)] pub enum BootError { /// Error from flash. Flash(NorFlashErrorKind), /// Invalid bootloader magic BadMagic, } #[cfg(feature = "defmt")] impl defmt::Format for BootError { fn format(&self, fmt: defmt::Formatter) { match self { BootError::Flash(_) => defmt::write!(fmt, "BootError::Flash(_)"), BootError::BadMagic => defmt::write!(fmt, "BootError::BadMagic"), } } } impl From for BootError where E: NorFlashError, { fn from(error: E) -> Self { BootError::Flash(error.kind()) } } /// Trait defining the flash handles used for active and DFU partition. pub trait FlashConfig { /// The erase value of the state flash. Typically the default of 0xFF is used, but some flashes use a different value. const STATE_ERASE_VALUE: u8 = 0xFF; /// Flash type used for the state partition. type STATE: NorFlash; /// Flash type used for the active partition. type ACTIVE: NorFlash; /// Flash type used for the dfu partition. type DFU: NorFlash; /// Return flash instance used to write/read to/from active partition. fn active(&mut self) -> &mut Self::ACTIVE; /// Return flash instance used to write/read to/from dfu partition. fn dfu(&mut self) -> &mut Self::DFU; /// Return flash instance used to write/read to/from bootloader state. fn state(&mut self) -> &mut Self::STATE; } trait FlashConfigEx { fn page_size() -> u32; } impl FlashConfigEx for T { /// Get the page size which is the "unit of operation" within the bootloader. fn page_size() -> u32 { core::cmp::max(T::ACTIVE::ERASE_SIZE, T::DFU::ERASE_SIZE) as u32 } } /// BootLoader works with any flash implementing embedded_storage. pub struct BootLoader { // Page with current state of bootloader. The state partition has the following format: // All ranges are in multiples of WRITE_SIZE bytes. // | Range | Description | // | 0..1 | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. | // | 1..2 | Progress validity. ERASE_VALUE means valid, !ERASE_VALUE means invalid. | // | 2..2 + N | Progress index used while swapping or reverting | state: Partition, // Location of the partition which will be booted from active: Partition, // Location of the partition which will be swapped in when requested dfu: Partition, } impl BootLoader { /// Create a new instance of a bootloader with the given partitions. /// /// - All partitions must be aligned with the PAGE_SIZE const generic parameter. /// - The dfu partition must be at least PAGE_SIZE bigger than the active partition. pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self { Self { active, dfu, state } } /// Return the offset of the active partition into the active flash. pub fn boot_address(&self) -> usize { self.active.from as usize } /// Perform necessary boot preparations like swapping images. /// /// The DFU partition is assumed to be 1 page bigger than the active partition for the swap /// algorithm to work correctly. /// /// The provided aligned_buf argument must satisfy any alignment requirements /// given by the partition flashes. All flash operations will use this buffer. /// /// SWAPPING /// /// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition. /// The swap index contains the copy progress, as to allow continuation of the copy process on /// power failure. The index counter is represented within 1 or more pages (depending on total /// flash size), where a page X is considered swapped if index at location (X + WRITE_SIZE) /// contains a zero value. This ensures that index updates can be performed atomically and /// avoid a situation where the wrong index value is set (page write size is "atomic"). /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 0 | 1 | 2 | 3 | - | /// | DFU | 0 | 3 | 2 | 1 | X | /// +-----------+------------+--------+--------+--------+--------+ /// /// The algorithm starts by copying 'backwards', and after the first step, the layout is /// as follows: /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 1 | 1 | 2 | 1 | - | /// | DFU | 1 | 3 | 2 | 1 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// The next iteration performs the same steps /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 2 | 1 | 2 | 1 | - | /// | DFU | 2 | 3 | 2 | 2 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// And again until we're done /// /// +-----------+------------+--------+--------+--------+--------+ /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+------------+--------+--------+--------+--------+ /// | Active | 3 | 3 | 2 | 1 | - | /// | DFU | 3 | 3 | 1 | 2 | 3 | /// +-----------+------------+--------+--------+--------+--------+ /// /// REVERTING /// /// The reverting algorithm uses the swap index to discover that images were swapped, but that /// the application failed to mark the boot successful. In this case, the revert algorithm will /// run. /// /// The revert index is located separately from the swap index, to ensure that revert can continue /// on power failure. /// /// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start. /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | //*/ /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 1 | - | /// | DFU | 3 | 3 | 1 | 2 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 1 | - | /// | DFU | 3 | 3 | 2 | 2 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// /// +-----------+--------------+--------+--------+--------+--------+ /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 | /// +-----------+--------------+--------+--------+--------+--------+ /// | Active | 3 | 1 | 2 | 3 | - | /// | DFU | 3 | 3 | 2 | 1 | 3 | /// +-----------+--------------+--------+--------+--------+--------+ /// pub fn prepare_boot(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result { // Ensure we have enough progress pages to store copy progress assert_eq!(0, P::page_size() % aligned_buf.len() as u32); assert_eq!(0, P::page_size() % P::ACTIVE::WRITE_SIZE as u32); assert_eq!(0, P::page_size() % P::ACTIVE::ERASE_SIZE as u32); assert_eq!(0, P::page_size() % P::DFU::WRITE_SIZE as u32); assert_eq!(0, P::page_size() % P::DFU::ERASE_SIZE as u32); assert!(aligned_buf.len() >= P::STATE::WRITE_SIZE); assert_eq!(0, aligned_buf.len() % P::ACTIVE::WRITE_SIZE); assert_eq!(0, aligned_buf.len() % P::DFU::WRITE_SIZE); assert_partitions(self.active, self.dfu, self.state, P::page_size(), P::STATE::WRITE_SIZE); // Copy contents from partition N to active let state = self.read_state(p, aligned_buf)?; if state == State::Swap { // // Check if we already swapped. If we're in the swap state, this means we should revert // since the app has failed to mark boot as successful // if !self.is_swapped(p, aligned_buf)? { trace!("Swapping"); self.swap(p, aligned_buf)?; trace!("Swapping done"); } else { trace!("Reverting"); self.revert(p, aligned_buf)?; let state_flash = p.state(); let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE]; // Invalidate progress state_word.fill(!P::STATE_ERASE_VALUE); self.state .write_blocking(state_flash, P::STATE::WRITE_SIZE as u32, state_word)?; // Clear magic and progress self.state.wipe_blocking(state_flash)?; // Set magic state_word.fill(BOOT_MAGIC); self.state.write_blocking(state_flash, 0, state_word)?; } } Ok(state) } fn is_swapped(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result { let page_count = (self.active.size() / P::page_size()) as usize; let progress = self.current_progress(p, aligned_buf)?; Ok(progress >= page_count * 2) } fn current_progress(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result { let write_size = P::STATE::WRITE_SIZE as u32; let max_index = (((self.state.size() - write_size) / write_size) - 2) as usize; let state_flash = config.state(); let state_word = &mut aligned_buf[..write_size as usize]; self.state.read_blocking(state_flash, write_size, state_word)?; if state_word.iter().any(|&b| b != P::STATE_ERASE_VALUE) { // Progress is invalid return Ok(max_index); } for index in 0..max_index { self.state .read_blocking(state_flash, (2 + index) as u32 * write_size, state_word)?; if state_word.iter().any(|&b| b == P::STATE_ERASE_VALUE) { return Ok(index); } } Ok(max_index) } fn update_progress( &mut self, progress_index: usize, p: &mut P, aligned_buf: &mut [u8], ) -> Result<(), BootError> { let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE]; state_word.fill(!P::STATE_ERASE_VALUE); self.state.write_blocking( p.state(), (2 + progress_index) as u32 * P::STATE::WRITE_SIZE as u32, state_word, )?; Ok(()) } fn copy_page_once_to_active( &mut self, progress_index: usize, from_offset: u32, to_offset: u32, p: &mut P, aligned_buf: &mut [u8], ) -> Result<(), BootError> { if self.current_progress(p, aligned_buf)? <= progress_index { let page_size = P::page_size() as u32; self.active .erase_blocking(p.active(), to_offset, to_offset + page_size)?; for offset_in_page in (0..page_size).step_by(aligned_buf.len()) { self.dfu .read_blocking(p.dfu(), from_offset + offset_in_page as u32, aligned_buf)?; self.active .write_blocking(p.active(), to_offset + offset_in_page as u32, aligned_buf)?; } self.update_progress(progress_index, p, aligned_buf)?; } Ok(()) } fn copy_page_once_to_dfu( &mut self, progress_index: usize, from_offset: u32, to_offset: u32, p: &mut P, aligned_buf: &mut [u8], ) -> Result<(), BootError> { if self.current_progress(p, aligned_buf)? <= progress_index { let page_size = P::page_size() as u32; self.dfu .erase_blocking(p.dfu(), to_offset as u32, to_offset + page_size)?; for offset_in_page in (0..page_size).step_by(aligned_buf.len()) { self.active .read_blocking(p.active(), from_offset + offset_in_page as u32, aligned_buf)?; self.dfu .write_blocking(p.dfu(), to_offset + offset_in_page as u32, aligned_buf)?; } self.update_progress(progress_index, p, aligned_buf)?; } Ok(()) } fn swap(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> { let page_size = P::page_size(); let page_count = self.active.size() / page_size; for page_num in 0..page_count { let progress_index = (page_num * 2) as usize; // Copy active page to the 'next' DFU page. let active_from_offset = (page_count - 1 - page_num) * page_size; let dfu_to_offset = (page_count - page_num) * page_size; //trace!("Copy active {} to dfu {}", active_from_offset, dfu_to_offset); self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, p, aligned_buf)?; // Copy DFU page to the active page let active_to_offset = (page_count - 1 - page_num) * page_size; let dfu_from_offset = (page_count - 1 - page_num) * page_size; //trace!("Copy dfy {} to active {}", dfu_from_offset, active_to_offset); self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?; } Ok(()) } fn revert(&mut self, p: &mut P, aligned_buf: &mut [u8]) -> Result<(), BootError> { let page_size = P::page_size(); let page_count = self.active.size() / page_size; for page_num in 0..page_count { let progress_index = (page_count * 2 + page_num * 2) as usize; // Copy the bad active page to the DFU page let active_from_offset = page_num * page_size; let dfu_to_offset = page_num * page_size; self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, p, aligned_buf)?; // Copy the DFU page back to the active page let active_to_offset = page_num * page_size; let dfu_from_offset = (page_num + 1) * page_size; self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, p, aligned_buf)?; } Ok(()) } fn read_state(&mut self, config: &mut P, aligned_buf: &mut [u8]) -> Result { let state_word = &mut aligned_buf[..P::STATE::WRITE_SIZE]; self.state.read_blocking(config.state(), 0, state_word)?; if !state_word.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } } fn assert_partitions(active: Partition, dfu: Partition, state: Partition, page_size: u32, state_write_size: usize) { assert_eq!(active.size() % page_size, 0); assert_eq!(dfu.size() % page_size, 0); assert!(dfu.size() - active.size() >= page_size); assert!(2 + 2 * (active.size() / page_size) <= state.size() / state_write_size as u32); } /// A flash wrapper implementing the Flash and embedded_storage traits. pub struct BootFlash where F: NorFlash, { flash: F, } impl BootFlash where F: NorFlash, { /// Create a new instance of a bootable flash pub fn new(flash: F) -> Self { Self { flash } } } impl ErrorType for BootFlash where F: NorFlash, { type Error = F::Error; } impl NorFlash for BootFlash where F: NorFlash, { const WRITE_SIZE: usize = F::WRITE_SIZE; const ERASE_SIZE: usize = F::ERASE_SIZE; fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { F::erase(&mut self.flash, from, to) } fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> { F::write(&mut self.flash, offset, bytes) } } impl ReadNorFlash for BootFlash where F: NorFlash, { const READ_SIZE: usize = F::READ_SIZE; fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> { F::read(&mut self.flash, offset, bytes) } fn capacity(&self) -> usize { F::capacity(&self.flash) } } /// Convenience provider that uses a single flash for all partitions. pub struct SingleFlashConfig<'a, F> where F: NorFlash, { flash: &'a mut F, } impl<'a, F> SingleFlashConfig<'a, F> where F: NorFlash, { /// Create a provider for a single flash. pub fn new(flash: &'a mut F) -> Self { Self { flash } } } impl<'a, F> FlashConfig for SingleFlashConfig<'a, F> where F: NorFlash, { type STATE = F; type ACTIVE = F; type DFU = F; fn active(&mut self) -> &mut Self::STATE { self.flash } fn dfu(&mut self) -> &mut Self::ACTIVE { self.flash } fn state(&mut self) -> &mut Self::DFU { self.flash } } /// Convenience flash provider that uses separate flash instances for each partition. pub struct MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: NorFlash, STATE: NorFlash, DFU: NorFlash, { active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU, } impl<'a, ACTIVE, STATE, DFU> MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: NorFlash, STATE: NorFlash, DFU: NorFlash, { /// Create a new flash provider with separate configuration for all three partitions. pub fn new(active: &'a mut ACTIVE, state: &'a mut STATE, dfu: &'a mut DFU) -> Self { Self { active, state, dfu } } } impl<'a, ACTIVE, STATE, DFU> FlashConfig for MultiFlashConfig<'a, ACTIVE, STATE, DFU> where ACTIVE: NorFlash, STATE: NorFlash, DFU: NorFlash, { type STATE = STATE; type ACTIVE = ACTIVE; type DFU = DFU; fn active(&mut self) -> &mut Self::ACTIVE { self.active } fn dfu(&mut self) -> &mut Self::DFU { self.dfu } fn state(&mut self) -> &mut Self::STATE { self.state } } #[cfg(test)] mod tests { use super::*; #[test] #[should_panic] fn test_range_asserts() { const ACTIVE: Partition = Partition::new(4096, 4194304); const DFU: Partition = Partition::new(4194304, 2 * 4194304); const STATE: Partition = Partition::new(0, 4096); assert_partitions(ACTIVE, DFU, STATE, 4096, 4); } }