use core::marker::PhantomData; use embassy::util::Unborrow; use crate::pac::{ flash::vals::Latency, rcc::vals::{Hpre, Hsebyp, Pllmul, Pllsrc, Ppre, Prediv, Sw, Usbpre}, FLASH, RCC, }; use crate::peripherals; use crate::rcc::{set_freqs, Clocks}; use crate::time::Hertz; const HSI: u32 = 8_000_000; /// RCC peripheral pub struct Rcc<'d> { config: Config, phantom: PhantomData<&'d mut peripherals::RCC>, } /// Clocks configutation #[non_exhaustive] #[derive(Default)] pub struct Config { /// Frequency of HSE oscillator /// 4MHz to 32MHz pub hse: Option, /// Bypass HSE for an external clock pub bypass_hse: bool, /// Frequency of the System Clock pub sysclk: Option, /// Frequency of AHB bus pub hclk: Option, /// Frequency of APB1 bus /// - Max frequency 36MHz pub pclk1: Option, /// Frequency of APB2 bus /// - Max frequency with HSE is 72MHz /// - Max frequency without HSE is 64MHz pub pclk2: Option, /// USB clock setup /// It is valid only when, /// - HSE is enabled, /// - The System clock frequency is either 48MHz or 72MHz /// - APB1 clock has a minimum frequency of 10MHz pub pll48: bool, } // Information required to setup the PLL clock struct PllConfig { pll_src: Pllsrc, pll_mul: Pllmul, pll_div: Option, } /// Initialize and Set the clock frequencies pub unsafe fn init(config: Config) { let r = ::steal(); let clocks = Rcc::new(r, config).freeze(); set_freqs(clocks); } impl<'d> Rcc<'d> { pub fn new(_rcc: impl Unborrow + 'd, config: Config) -> Self { Self { config, phantom: PhantomData, } } fn freeze(self) -> Clocks { // Calculate the real System clock, and PLL configuration if applicable let (Hertz(sysclk), pll_config) = self.get_sysclk(); assert!(sysclk <= 72_000_000); // Calculate real AHB clock let hclk = self.config.hclk.map(|h| h.0).unwrap_or(sysclk); let (hpre_bits, hpre_div) = match sysclk / hclk { 0 => unreachable!(), 1 => (Hpre::DIV1, 1), 2 => (Hpre::DIV2, 2), 3..=5 => (Hpre::DIV4, 4), 6..=11 => (Hpre::DIV8, 8), 12..=39 => (Hpre::DIV16, 16), 40..=95 => (Hpre::DIV64, 64), 96..=191 => (Hpre::DIV128, 128), 192..=383 => (Hpre::DIV256, 256), _ => (Hpre::DIV512, 512), }; let hclk = sysclk / hpre_div; assert!(hclk <= 72_000_000); // Calculate real APB1 clock let pclk1 = self.config.pclk1.map(|p| p.0).unwrap_or(hclk); let (ppre1_bits, ppre1) = match hclk / pclk1 { 0 => unreachable!(), 1 => (Ppre::DIV1, 1), 2 => (Ppre::DIV2, 2), 3..=5 => (Ppre::DIV4, 4), 6..=11 => (Ppre::DIV8, 8), _ => (Ppre::DIV16, 16), }; let timer_mul1 = if ppre1 == 1 { 1 } else { 2 }; let pclk1 = hclk / ppre1; assert!(pclk1 <= 36_000_000); // Calculate real APB2 clock let pclk2 = self.config.pclk2.map(|p| p.0).unwrap_or(hclk); let (ppre2_bits, ppre2) = match hclk / pclk2 { 0 => unreachable!(), 1 => (Ppre::DIV1, 1), 2 => (Ppre::DIV2, 2), 3..=5 => (Ppre::DIV4, 4), 6..=11 => (Ppre::DIV8, 8), _ => (Ppre::DIV16, 16), }; let timer_mul2 = if ppre2 == 1 { 1 } else { 2 }; let pclk2 = hclk / ppre2; assert!(pclk2 <= 72_000_000); // Set latency based on HCLK frquency // NOTE(safety) Atomic write unsafe { FLASH.acr().write(|w| { w.set_latency(if hclk <= 24_000_000 { Latency::WS0 } else if hclk <= 48_000_000 { Latency::WS1 } else { Latency::WS2 }); }) } // Enable HSE if self.config.hse.is_some() { // NOTE(unsafe) We own the peripheral block unsafe { RCC.cr().write(|w| { w.set_hsebyp(if self.config.bypass_hse { Hsebyp::BYPASSED } else { Hsebyp::NOTBYPASSED }); // We turn on clock security to switch to HSI when HSE fails w.set_csson(true); w.set_hseon(true); }); while !RCC.cr().read().hserdy() {} } } // Enable PLL if let Some(ref pll_config) = pll_config { // NOTE(unsafe) We own the peripheral block unsafe { RCC.cfgr().write(|w| { w.set_pllmul(pll_config.pll_mul); w.set_pllsrc(pll_config.pll_src); }); if let Some(pll_div) = pll_config.pll_div { RCC.cfgr2().write(|w| w.set_prediv(pll_div)); } RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} } } if self.config.pll48 { let usb_pre = self.get_usb_pre(sysclk, pclk1, &pll_config); // NOTE(unsafe) We own the peripheral block unsafe { RCC.cfgr().write(|w| { w.set_usbpre(usb_pre); }); } } // Set prescalers unsafe { // NOTE(unsafe) We own the peripheral block RCC.cfgr().write(|w| { w.set_ppre2(ppre2_bits); w.set_ppre1(ppre1_bits); w.set_hpre(hpre_bits); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from // 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); // NOTE(unsafe) We own the peripheral block RCC.cfgr().write(|w| { w.set_sw(match (pll_config, self.config.hse) { (Some(_), _) => Sw::PLL, (None, Some(_)) => Sw::HSE, (None, None) => Sw::HSI, }) }); } Clocks { sys: Hertz(sysclk), apb1: Hertz(pclk1), apb2: Hertz(pclk2), apb1_tim: Hertz(pclk1 * timer_mul1), apb2_tim: Hertz(pclk2 * timer_mul2), ahb: Hertz(hclk), } } #[inline] fn get_sysclk(&self) -> (Hertz, Option) { match (self.config.sysclk, self.config.hse) { (Some(sysclk), Some(hse)) if sysclk == hse => (hse, None), (Some(sysclk), None) if sysclk.0 == HSI => (Hertz(HSI), None), // If the user selected System clock is different from HSI or HSE // we will have to setup PLL clock source (Some(sysclk), _) => { let (sysclk, pll_config) = self.calc_pll(sysclk); (sysclk, Some(pll_config)) } (None, Some(hse)) => (hse, None), (None, None) => (Hertz(HSI), None), } } #[inline] fn calc_pll(&self, Hertz(sysclk): Hertz) -> (Hertz, PllConfig) { // Calculates the Multiplier and the Divisor to arrive at // the required System clock from PLL source frequency let get_mul_div = |sysclk, pllsrcclk| { let common_div = gcd(sysclk, pllsrcclk); let mut multiplier = sysclk / common_div; let mut divisor = pllsrcclk / common_div; // Minimum PLL multiplier is two if multiplier == 1 { multiplier *= 2; divisor *= 2; } assert!(multiplier <= 16); assert!(divisor <= 16); (multiplier, divisor) }; // Based on the source of Pll, we calculate the actual system clock // frequency, PLL's source identifier, multiplier and divisor let (act_sysclk, pll_src, pll_mul, pll_div) = match self.config.hse { Some(Hertz(hse)) => { let (multiplier, divisor) = get_mul_div(sysclk, hse); ( Hertz((hse / divisor) * multiplier), Pllsrc::HSE_DIV_PREDIV, into_pll_mul(multiplier), Some(into_pre_div(divisor)), ) } None => { cfg_if::cfg_if! { // For some chips PREDIV is always two, and cannot be changed if #[cfg(any( feature="stm32f302xd", feature="stm32f302xe", feature="stm32f303xd", feature="stm32f303xe", feature="stm32f398xe" ))] { let (multiplier, divisor) = get_mul_div(sysclk, HSI); ( Hertz((hse / divisor) * multiplier), Pllsrc::HSI_DIV_PREDIV, into_pll_mul(multiplier), Some(into_pre_div(divisor)), ) } else { let pllsrcclk = HSI / 2; let multiplier = sysclk / pllsrcclk; assert!(multiplier <= 16); ( Hertz(pllsrcclk * multiplier), Pllsrc::HSI_DIV2, into_pll_mul(multiplier), None, ) } } } }; ( act_sysclk, PllConfig { pll_src, pll_mul, pll_div, }, ) } #[inline] fn get_usb_pre(&self, sysclk: u32, pclk1: u32, pll_config: &Option) -> Usbpre { cfg_if::cfg_if! { // Some chips do not have USB if #[cfg(any(stm32f301, stm32f318, stm32f334))] { panic!("USB clock not supported by the chip"); } else { let usb_ok = self.config.hse.is_some() && pll_config.is_some() && (pclk1 >= 10_000_000); match (usb_ok, sysclk) { (true, 72_000_000) => Usbpre::DIV1_5, (true, 48_000_000) => Usbpre::DIV1, _ => panic!( "USB clock is only valid if the PLL output frequency is either 48MHz or 72MHz" ), } } } } } // This function assumes cases when multiplier is one and it // being greater than 16 is made impossible #[inline] fn into_pll_mul(multiplier: u32) -> Pllmul { match multiplier { 2 => Pllmul::MUL2, 3 => Pllmul::MUL3, 4 => Pllmul::MUL4, 5 => Pllmul::MUL5, 6 => Pllmul::MUL6, 7 => Pllmul::MUL7, 8 => Pllmul::MUL8, 9 => Pllmul::MUL9, 10 => Pllmul::MUL10, 11 => Pllmul::MUL11, 12 => Pllmul::MUL12, 13 => Pllmul::MUL13, 14 => Pllmul::MUL14, 15 => Pllmul::MUL15, 16 => Pllmul::MUL16, _ => unreachable!(), } } // This function assumes the incoming divisor cannot be greater // than 16 #[inline] fn into_pre_div(divisor: u32) -> Prediv { match divisor { 1 => Prediv::DIV1, 2 => Prediv::DIV2, 3 => Prediv::DIV3, 4 => Prediv::DIV4, 5 => Prediv::DIV5, 6 => Prediv::DIV6, 7 => Prediv::DIV7, 8 => Prediv::DIV8, 9 => Prediv::DIV9, 10 => Prediv::DIV10, 11 => Prediv::DIV11, 12 => Prediv::DIV12, 13 => Prediv::DIV13, 14 => Prediv::DIV14, 15 => Prediv::DIV15, 16 => Prediv::DIV16, _ => unreachable!(), } } // Determine GCD using Euclidean algorithm #[inline] fn gcd(mut a: u32, mut b: u32) -> u32 { while b != 0 { let r = a % b; a = b; b = r; } a }