use stm32_metapac::rtc::vals::{Init, Osel, Pol}; use super::{Instance, RtcConfig}; use crate::pac::rtc::Rtc; #[cfg_attr(rtc_v2f0, path = "v2f0.rs")] #[cfg_attr(rtc_v2f2, path = "v2f2.rs")] #[cfg_attr(rtc_v2f3, path = "v2f3.rs")] #[cfg_attr(rtc_v2f4, path = "v2f4.rs")] #[cfg_attr(rtc_v2f7, path = "v2f7.rs")] #[cfg_attr(rtc_v2h7, path = "v2h7.rs")] #[cfg_attr(rtc_v2l0, path = "v2l0.rs")] #[cfg_attr(rtc_v2l1, path = "v2l1.rs")] #[cfg_attr(rtc_v2l4, path = "v2l4.rs")] #[cfg_attr(rtc_v2wb, path = "v2wb.rs")] mod family; pub use family::*; impl<'d, T: Instance> super::Rtc<'d, T> { /// Applies the RTC config /// It this changes the RTC clock source the time will be reset pub(super) fn apply_config(&mut self, rtc_config: RtcConfig) { // Unlock the backup domain unsafe { unlock_backup_domain(rtc_config.clock_config as u8); } self.write(true, |rtc| unsafe { rtc.cr().modify(|w| { #[cfg(rtc_v2f2)] w.set_fmt(false); #[cfg(not(rtc_v2f2))] w.set_fmt(stm32_metapac::rtc::vals::Fmt::TWENTY_FOUR_HOUR); w.set_osel(Osel::DISABLED); w.set_pol(Pol::HIGH); }); rtc.prer().modify(|w| { w.set_prediv_s(rtc_config.sync_prescaler); w.set_prediv_a(rtc_config.async_prescaler); }); }); self.rtc_config = rtc_config; } /// Calibrate the clock drift. /// /// `clock_drift` can be adjusted from -487.1 ppm to 488.5 ppm and is clamped to this range. /// /// ### Note /// /// To perform a calibration when `async_prescaler` is less then 3, `sync_prescaler` /// has to be reduced accordingly (see RM0351 Rev 9, sec 38.3.12). #[cfg(not(rtc_v2f2))] pub fn calibrate(&mut self, mut clock_drift: f32, period: super::RtcCalibrationCyclePeriod) { const RTC_CALR_MIN_PPM: f32 = -487.1; const RTC_CALR_MAX_PPM: f32 = 488.5; const RTC_CALR_RESOLUTION_PPM: f32 = 0.9537; if clock_drift < RTC_CALR_MIN_PPM { clock_drift = RTC_CALR_MIN_PPM; } else if clock_drift > RTC_CALR_MAX_PPM { clock_drift = RTC_CALR_MAX_PPM; } clock_drift = clock_drift / RTC_CALR_RESOLUTION_PPM; self.write(false, |rtc| { unsafe { rtc.calr().write(|w| { match period { super::RtcCalibrationCyclePeriod::Seconds8 => { w.set_calw8(stm32_metapac::rtc::vals::Calw8::EIGHT_SECOND); } super::RtcCalibrationCyclePeriod::Seconds16 => { w.set_calw16(stm32_metapac::rtc::vals::Calw16::SIXTEEN_SECOND); } super::RtcCalibrationCyclePeriod::Seconds32 => { // Set neither `calw8` nor `calw16` to use 32 seconds } } // Extra pulses during calibration cycle period: CALP * 512 - CALM // // CALP sets whether pulses are added or omitted. // // CALM contains how many pulses (out of 512) are masked in a // given calibration cycle period. if clock_drift > 0.0 { // Maximum (about 512.2) rounds to 512. clock_drift += 0.5; // When the offset is positive (0 to 512), the opposite of // the offset (512 - offset) is masked, i.e. for the // maximum offset (512), 0 pulses are masked. w.set_calp(stm32_metapac::rtc::vals::Calp::INCREASEFREQ); w.set_calm(512 - clock_drift as u16); } else { // Minimum (about -510.7) rounds to -511. clock_drift -= 0.5; // When the offset is negative or zero (-511 to 0), // the absolute offset is masked, i.e. for the minimum // offset (-511), 511 pulses are masked. w.set_calp(stm32_metapac::rtc::vals::Calp::NOCHANGE); w.set_calm((clock_drift * -1.0) as u16); } }); } }) } pub(super) fn write(&mut self, init_mode: bool, f: F) -> R where F: FnOnce(&crate::pac::rtc::Rtc) -> R, { let r = T::regs(); // Disable write protection. // This is safe, as we're only writin the correct and expected values. unsafe { r.wpr().write(|w| w.set_key(0xca)); r.wpr().write(|w| w.set_key(0x53)); // true if initf bit indicates RTC peripheral is in init mode if init_mode && !r.isr().read().initf() { // to update calendar date/time, time format, and prescaler configuration, RTC must be in init mode r.isr().modify(|w| w.set_init(Init::INITMODE)); // wait till init state entered // ~2 RTCCLK cycles while !r.isr().read().initf() {} } } let result = f(&r); unsafe { if init_mode { r.isr().modify(|w| w.set_init(Init::FREERUNNINGMODE)); // Exits init mode } // Re-enable write protection. // This is safe, as the field accepts the full range of 8-bit values. r.wpr().write(|w| w.set_key(0xff)); } result } } /// Read content of the backup register. /// /// The registers retain their values during wakes from standby mode or system resets. They also /// retain their value when Vdd is switched off as long as V_BAT is powered. pub fn read_backup_register(rtc: &Rtc, register: usize) -> Option { if register < BACKUP_REGISTER_COUNT { Some(unsafe { rtc.bkpr(register).read().bkp() }) } else { None } } /// Set content of the backup register. /// /// The registers retain their values during wakes from standby mode or system resets. They also /// retain their value when Vdd is switched off as long as V_BAT is powered. pub fn write_backup_register(rtc: &Rtc, register: usize, value: u32) { if register < BACKUP_REGISTER_COUNT { unsafe { rtc.bkpr(register).write(|w| w.set_bkp(value)) } } }