#![no_std] #![no_main] teleprobe_meta::target!(b"rpi-pico"); use defmt::{assert_eq, *}; use embassy_executor::Spawner; use embassy_rp::bind_interrupts; use embassy_rp::gpio::{Level, Output}; use embassy_rp::peripherals::UART0; use embassy_rp::uart::{Async, Config, Error, Instance, InterruptHandler, Parity, Uart, UartRx}; use embassy_time::Timer; use {defmt_rtt as _, panic_probe as _}; bind_interrupts!(struct Irqs { UART0_IRQ => InterruptHandler; }); async fn read(uart: &mut Uart<'_, impl Instance, Async>) -> Result<[u8; N], Error> { let mut buf = [255; N]; uart.read(&mut buf).await?; Ok(buf) } async fn read1(uart: &mut UartRx<'_, impl Instance, Async>) -> Result<[u8; N], Error> { let mut buf = [255; N]; uart.read(&mut buf).await?; Ok(buf) } async fn send(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, parity: Option) { pin.set_low(); Timer::after_millis(1).await; for i in 0..8 { if v & (1 << i) == 0 { pin.set_low(); } else { pin.set_high(); } Timer::after_millis(1).await; } if let Some(b) = parity { if b { pin.set_high(); } else { pin.set_low(); } Timer::after_millis(1).await; } pin.set_high(); Timer::after_millis(1).await; } #[embassy_executor::main] async fn main(_spawner: Spawner) { let mut p = embassy_rp::init(Default::default()); info!("Hello World!"); let (mut tx, mut rx, mut uart) = (p.PIN_0, p.PIN_1, p.UART0); // We can't send too many bytes, they have to fit in the FIFO. // This is because we aren't sending+receiving at the same time. { let config = Config::default(); let mut uart = Uart::new( &mut uart, &mut tx, &mut rx, Irqs, &mut p.DMA_CH0, &mut p.DMA_CH1, config, ); let data = [0xC0, 0xDE]; uart.write(&data).await.unwrap(); let mut buf = [0; 2]; uart.read(&mut buf).await.unwrap(); assert_eq!(buf, data); } info!("test overflow detection"); { let config = Config::default(); let mut uart = Uart::new( &mut uart, &mut tx, &mut rx, Irqs, &mut p.DMA_CH0, &mut p.DMA_CH1, config, ); uart.blocking_write(&[42; 32]).unwrap(); uart.blocking_write(&[1, 2, 3]).unwrap(); uart.blocking_flush().unwrap(); // can receive regular fifo contents assert_eq!(read(&mut uart).await, Ok([42; 16])); assert_eq!(read(&mut uart).await, Ok([42; 16])); // receiving the rest fails with overrun assert_eq!(read::<16>(&mut uart).await, Err(Error::Overrun)); // new data is accepted, latest overrunning byte first assert_eq!(read(&mut uart).await, Ok([3])); uart.blocking_write(&[8, 9]).unwrap(); Timer::after_millis(1).await; assert_eq!(read(&mut uart).await, Ok([8, 9])); } info!("test break detection"); { let config = Config::default(); let (mut tx, mut rx) = Uart::new( &mut uart, &mut tx, &mut rx, Irqs, &mut p.DMA_CH0, &mut p.DMA_CH1, config, ) .split(); // break before read tx.send_break(20).await; tx.write(&[64]).await.unwrap(); assert_eq!(read1::<1>(&mut rx).await.unwrap_err(), Error::Break); assert_eq!(read1(&mut rx).await.unwrap(), [64]); // break during read { let r = read1::<2>(&mut rx); tx.write(&[2]).await.unwrap(); tx.send_break(20).await; tx.write(&[3]).await.unwrap(); assert_eq!(r.await.unwrap_err(), Error::Break); assert_eq!(read1(&mut rx).await.unwrap(), [3]); } // break after read { let r = read1(&mut rx); tx.write(&[2]).await.unwrap(); tx.send_break(20).await; tx.write(&[3]).await.unwrap(); assert_eq!(r.await.unwrap(), [2]); assert_eq!(read1::<1>(&mut rx).await.unwrap_err(), Error::Break); assert_eq!(read1(&mut rx).await.unwrap(), [3]); } } // parity detection. here we bitbang to not require two uarts. info!("test parity error detection"); { let mut pin = Output::new(&mut tx, Level::High); // choose a very slow baud rate to make tests reliable even with O0 let mut config = Config::default(); config.baudrate = 1000; config.parity = Parity::ParityEven; let mut uart = UartRx::new(&mut uart, &mut rx, Irqs, &mut p.DMA_CH0, config); async fn chr(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, parity: u32) { send(pin, v, Some(parity != 0)).await; } // first check that we can send correctly chr(&mut pin, 32, 1).await; assert_eq!(read1(&mut uart).await.unwrap(), [32]); // parity error before read chr(&mut pin, 32, 0).await; chr(&mut pin, 31, 1).await; assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Parity); assert_eq!(read1(&mut uart).await.unwrap(), [31]); // parity error during read { let r = read1::<2>(&mut uart); chr(&mut pin, 2, 1).await; chr(&mut pin, 32, 0).await; chr(&mut pin, 3, 0).await; assert_eq!(r.await.unwrap_err(), Error::Parity); assert_eq!(read1(&mut uart).await.unwrap(), [3]); } // parity error after read { let r = read1(&mut uart); chr(&mut pin, 2, 1).await; chr(&mut pin, 32, 0).await; chr(&mut pin, 3, 0).await; assert_eq!(r.await.unwrap(), [2]); assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Parity); assert_eq!(read1(&mut uart).await.unwrap(), [3]); } } // framing error detection. here we bitbang because there's no other way. info!("test framing error detection"); { let mut pin = Output::new(&mut tx, Level::High); // choose a very slow baud rate to make tests reliable even with O0 let mut config = Config::default(); config.baudrate = 1000; let mut uart = UartRx::new(&mut uart, &mut rx, Irqs, &mut p.DMA_CH0, config); async fn chr(pin: &mut Output<'_, impl embassy_rp::gpio::Pin>, v: u8, good: bool) { if good { send(pin, v, None).await; } else { send(pin, v, Some(false)).await; } } // first check that we can send correctly chr(&mut pin, 32, true).await; assert_eq!(read1(&mut uart).await.unwrap(), [32]); // parity error before read chr(&mut pin, 32, false).await; chr(&mut pin, 31, true).await; assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Framing); assert_eq!(read1(&mut uart).await.unwrap(), [31]); // parity error during read { let r = read1::<2>(&mut uart); chr(&mut pin, 2, true).await; chr(&mut pin, 32, false).await; chr(&mut pin, 3, true).await; assert_eq!(r.await.unwrap_err(), Error::Framing); assert_eq!(read1(&mut uart).await.unwrap(), [3]); } // parity error after read { let r = read1(&mut uart); chr(&mut pin, 2, true).await; chr(&mut pin, 32, false).await; chr(&mut pin, 3, true).await; assert_eq!(r.await.unwrap(), [2]); assert_eq!(read1::<1>(&mut uart).await.unwrap_err(), Error::Framing); assert_eq!(read1(&mut uart).await.unwrap(), [3]); } } info!("Test OK"); cortex_m::asm::bkpt(); }