//! This example shows how to use SPI (Serial Peripheral Interface) in the RP2040 chip. //! //! Example written for a display using the ST7789 chip. Possibly the Waveshare Pico-ResTouch //! (https://www.waveshare.com/wiki/Pico-ResTouch-LCD-2.8) #![no_std] #![no_main] #![feature(type_alias_impl_trait)] use core::cell::RefCell; use defmt::*; use embassy_embedded_hal::shared_bus::blocking::spi::SpiDeviceWithConfig; use embassy_executor::Spawner; use embassy_rp::gpio::{Level, Output}; use embassy_rp::spi; use embassy_rp::spi::{Blocking, Spi}; use embassy_sync::blocking_mutex::raw::NoopRawMutex; use embassy_sync::blocking_mutex::Mutex; use embassy_time::Delay; use embedded_graphics::image::{Image, ImageRawLE}; use embedded_graphics::mono_font::ascii::FONT_10X20; use embedded_graphics::mono_font::MonoTextStyle; use embedded_graphics::pixelcolor::Rgb565; use embedded_graphics::prelude::*; use embedded_graphics::primitives::{PrimitiveStyleBuilder, Rectangle}; use embedded_graphics::text::Text; use st7789::{Orientation, ST7789}; use {defmt_rtt as _, panic_probe as _}; use crate::my_display_interface::SPIDeviceInterface; use crate::touch::Touch; const DISPLAY_FREQ: u32 = 64_000_000; const TOUCH_FREQ: u32 = 200_000; #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_rp::init(Default::default()); info!("Hello World!"); let bl = p.PIN_13; let rst = p.PIN_15; let display_cs = p.PIN_9; let dcx = p.PIN_8; let miso = p.PIN_12; let mosi = p.PIN_11; let clk = p.PIN_10; let touch_cs = p.PIN_16; //let touch_irq = p.PIN_17; // create SPI let mut display_config = spi::Config::default(); display_config.frequency = DISPLAY_FREQ; display_config.phase = spi::Phase::CaptureOnSecondTransition; display_config.polarity = spi::Polarity::IdleHigh; let mut touch_config = spi::Config::default(); touch_config.frequency = TOUCH_FREQ; touch_config.phase = spi::Phase::CaptureOnSecondTransition; touch_config.polarity = spi::Polarity::IdleHigh; let spi: Spi<'_, _, Blocking> = Spi::new_blocking(p.SPI1, clk, mosi, miso, touch_config.clone()); let spi_bus: Mutex = Mutex::new(RefCell::new(spi)); let display_spi = SpiDeviceWithConfig::new(&spi_bus, Output::new(display_cs, Level::High), display_config); let touch_spi = SpiDeviceWithConfig::new(&spi_bus, Output::new(touch_cs, Level::High), touch_config); let mut touch = Touch::new(touch_spi); let dcx = Output::new(dcx, Level::Low); let rst = Output::new(rst, Level::Low); // dcx: 0 = command, 1 = data // Enable LCD backlight let _bl = Output::new(bl, Level::High); // display interface abstraction from SPI and DC let di = SPIDeviceInterface::new(display_spi, dcx); // create driver let mut display = ST7789::new(di, rst, 240, 320); // initialize display.init(&mut Delay).unwrap(); // set default orientation display.set_orientation(Orientation::Landscape).unwrap(); display.clear(Rgb565::BLACK).unwrap(); let raw_image_data = ImageRawLE::new(include_bytes!("../../assets/ferris.raw"), 86); let ferris = Image::new(&raw_image_data, Point::new(34, 68)); // Display the image ferris.draw(&mut display).unwrap(); let style = MonoTextStyle::new(&FONT_10X20, Rgb565::GREEN); Text::new( "Hello embedded_graphics \n + embassy + RP2040!", Point::new(20, 200), style, ) .draw(&mut display) .unwrap(); loop { if let Some((x, y)) = touch.read() { let style = PrimitiveStyleBuilder::new().fill_color(Rgb565::BLUE).build(); Rectangle::new(Point::new(x - 1, y - 1), Size::new(3, 3)) .into_styled(style) .draw(&mut display) .unwrap(); } } } /// Driver for the XPT2046 resistive touchscreen sensor mod touch { use embedded_hal_1::spi::{Operation, SpiDevice}; struct Calibration { x1: i32, x2: i32, y1: i32, y2: i32, sx: i32, sy: i32, } const CALIBRATION: Calibration = Calibration { x1: 3880, x2: 340, y1: 262, y2: 3850, sx: 320, sy: 240, }; pub struct Touch { spi: SPI, } impl Touch where SPI: SpiDevice, { pub fn new(spi: SPI) -> Self { Self { spi } } pub fn read(&mut self) -> Option<(i32, i32)> { let mut x = [0; 2]; let mut y = [0; 2]; self.spi .transaction(&mut [ Operation::Write(&[0x90]), Operation::Read(&mut x), Operation::Write(&[0xd0]), Operation::Read(&mut y), ]) .unwrap(); let x = (u16::from_be_bytes(x) >> 3) as i32; let y = (u16::from_be_bytes(y) >> 3) as i32; let cal = &CALIBRATION; let x = ((x - cal.x1) * cal.sx / (cal.x2 - cal.x1)).clamp(0, cal.sx); let y = ((y - cal.y1) * cal.sy / (cal.y2 - cal.y1)).clamp(0, cal.sy); if x == 0 && y == 0 { None } else { Some((x, y)) } } } } mod my_display_interface { use display_interface::{DataFormat, DisplayError, WriteOnlyDataCommand}; use embedded_hal_1::digital::OutputPin; use embedded_hal_1::spi::SpiDevice; /// SPI display interface. /// /// This combines the SPI peripheral and a data/command pin pub struct SPIDeviceInterface { spi: SPI, dc: DC, } impl SPIDeviceInterface where SPI: SpiDevice, DC: OutputPin, { /// Create new SPI interface for communciation with a display driver pub fn new(spi: SPI, dc: DC) -> Self { Self { spi, dc } } } impl WriteOnlyDataCommand for SPIDeviceInterface where SPI: SpiDevice, DC: OutputPin, { fn send_commands(&mut self, cmds: DataFormat<'_>) -> Result<(), DisplayError> { // 1 = data, 0 = command self.dc.set_low().map_err(|_| DisplayError::DCError)?; send_u8(&mut self.spi, cmds).map_err(|_| DisplayError::BusWriteError)?; Ok(()) } fn send_data(&mut self, buf: DataFormat<'_>) -> Result<(), DisplayError> { // 1 = data, 0 = command self.dc.set_high().map_err(|_| DisplayError::DCError)?; send_u8(&mut self.spi, buf).map_err(|_| DisplayError::BusWriteError)?; Ok(()) } } fn send_u8(spi: &mut T, words: DataFormat<'_>) -> Result<(), T::Error> { match words { DataFormat::U8(slice) => spi.write(slice), DataFormat::U16(slice) => { use byte_slice_cast::*; spi.write(slice.as_byte_slice()) } DataFormat::U16LE(slice) => { use byte_slice_cast::*; for v in slice.as_mut() { *v = v.to_le(); } spi.write(slice.as_byte_slice()) } DataFormat::U16BE(slice) => { use byte_slice_cast::*; for v in slice.as_mut() { *v = v.to_be(); } spi.write(slice.as_byte_slice()) } DataFormat::U8Iter(iter) => { let mut buf = [0; 32]; let mut i = 0; for v in iter.into_iter() { buf[i] = v; i += 1; if i == buf.len() { spi.write(&buf)?; i = 0; } } if i > 0 { spi.write(&buf[..i])?; } Ok(()) } DataFormat::U16LEIter(iter) => { use byte_slice_cast::*; let mut buf = [0; 32]; let mut i = 0; for v in iter.map(u16::to_le) { buf[i] = v; i += 1; if i == buf.len() { spi.write(&buf.as_byte_slice())?; i = 0; } } if i > 0 { spi.write(&buf[..i].as_byte_slice())?; } Ok(()) } DataFormat::U16BEIter(iter) => { use byte_slice_cast::*; let mut buf = [0; 64]; let mut i = 0; let len = buf.len(); for v in iter.map(u16::to_be) { buf[i] = v; i += 1; if i == len { spi.write(&buf.as_byte_slice())?; i = 0; } } if i > 0 { spi.write(&buf[..i].as_byte_slice())?; } Ok(()) } _ => unimplemented!(), } } }