use core::convert::TryInto; use core::ptr::write_volatile; use core::sync::atomic::{fence, Ordering}; use atomic_polyfill::AtomicBool; use embassy_sync::waitqueue::AtomicWaker; use pac::flash::regs::Sr; use pac::FLASH_SIZE; use super::{FlashBank, FlashRegion, FlashSector, FLASH_REGIONS, WRITE_SIZE}; use crate::flash::Error; use crate::pac; #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))] mod alt_regions { use core::marker::PhantomData; use embassy_hal_common::PeripheralRef; use stm32_metapac::FLASH_SIZE; use crate::_generated::flash_regions::{OTPRegion, BANK1_REGION1, BANK1_REGION2, BANK1_REGION3, OTP_REGION}; use crate::flash::{asynch, Async, Bank1Region1, Bank1Region2, Blocking, Error, Flash, FlashBank, FlashRegion}; use crate::peripherals::FLASH; pub const ALT_BANK1_REGION3: FlashRegion = FlashRegion { size: 3 * BANK1_REGION3.erase_size, ..BANK1_REGION3 }; pub const ALT_BANK2_REGION1: FlashRegion = FlashRegion { bank: FlashBank::Bank2, base: BANK1_REGION1.base + FLASH_SIZE as u32 / 2, ..BANK1_REGION1 }; pub const ALT_BANK2_REGION2: FlashRegion = FlashRegion { bank: FlashBank::Bank2, base: BANK1_REGION2.base + FLASH_SIZE as u32 / 2, ..BANK1_REGION2 }; pub const ALT_BANK2_REGION3: FlashRegion = FlashRegion { bank: FlashBank::Bank2, base: BANK1_REGION3.base + FLASH_SIZE as u32 / 2, size: 3 * BANK1_REGION3.erase_size, ..BANK1_REGION3 }; pub const ALT_FLASH_REGIONS: [&FlashRegion; 6] = [ &BANK1_REGION1, &BANK1_REGION2, &ALT_BANK1_REGION3, &ALT_BANK2_REGION1, &ALT_BANK2_REGION2, &ALT_BANK2_REGION3, ]; pub struct AltBank1Region3<'d, MODE = Async>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>, PhantomData); pub struct AltBank2Region1<'d, MODE = Async>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>, PhantomData); pub struct AltBank2Region2<'d, MODE = Async>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>, PhantomData); pub struct AltBank2Region3<'d, MODE = Async>(pub &'static FlashRegion, PeripheralRef<'d, FLASH>, PhantomData); pub struct AltFlashLayout<'d, MODE = Async> { pub bank1_region1: Bank1Region1<'d, MODE>, pub bank1_region2: Bank1Region2<'d, MODE>, pub bank1_region3: AltBank1Region3<'d, MODE>, pub bank2_region1: AltBank2Region1<'d, MODE>, pub bank2_region2: AltBank2Region2<'d, MODE>, pub bank2_region3: AltBank2Region3<'d, MODE>, pub otp_region: OTPRegion<'d, MODE>, } impl<'d> Flash<'d> { pub fn into_alt_regions(self) -> AltFlashLayout<'d, Async> { assert!(!super::is_default_layout()); // SAFETY: We never expose the cloned peripheral references, and their instance is not public. // Also, all async flash region operations are protected with a mutex. let p = self.inner; AltFlashLayout { bank1_region1: Bank1Region1(&BANK1_REGION1, unsafe { p.clone_unchecked() }, PhantomData), bank1_region2: Bank1Region2(&BANK1_REGION2, unsafe { p.clone_unchecked() }, PhantomData), bank1_region3: AltBank1Region3(&ALT_BANK1_REGION3, unsafe { p.clone_unchecked() }, PhantomData), bank2_region1: AltBank2Region1(&ALT_BANK2_REGION1, unsafe { p.clone_unchecked() }, PhantomData), bank2_region2: AltBank2Region2(&ALT_BANK2_REGION2, unsafe { p.clone_unchecked() }, PhantomData), bank2_region3: AltBank2Region3(&ALT_BANK2_REGION3, unsafe { p.clone_unchecked() }, PhantomData), otp_region: OTPRegion(&OTP_REGION, unsafe { p.clone_unchecked() }, PhantomData), } } pub fn into_alt_blocking_regions(self) -> AltFlashLayout<'d, Blocking> { assert!(!super::is_default_layout()); // SAFETY: We never expose the cloned peripheral references, and their instance is not public. // Also, all blocking flash region operations are protected with a cs. let p = self.inner; AltFlashLayout { bank1_region1: Bank1Region1(&BANK1_REGION1, unsafe { p.clone_unchecked() }, PhantomData), bank1_region2: Bank1Region2(&BANK1_REGION2, unsafe { p.clone_unchecked() }, PhantomData), bank1_region3: AltBank1Region3(&ALT_BANK1_REGION3, unsafe { p.clone_unchecked() }, PhantomData), bank2_region1: AltBank2Region1(&ALT_BANK2_REGION1, unsafe { p.clone_unchecked() }, PhantomData), bank2_region2: AltBank2Region2(&ALT_BANK2_REGION2, unsafe { p.clone_unchecked() }, PhantomData), bank2_region3: AltBank2Region3(&ALT_BANK2_REGION3, unsafe { p.clone_unchecked() }, PhantomData), otp_region: OTPRegion(&OTP_REGION, unsafe { p.clone_unchecked() }, PhantomData), } } } macro_rules! foreach_altflash_region { ($type_name:ident, $region:ident) => { impl $type_name<'_, MODE> { pub fn blocking_read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> { crate::flash::common::blocking_read(self.0.base, self.0.size, offset, bytes) } } impl $type_name<'_, Async> { pub async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> { self.blocking_read(offset, bytes) } pub async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Error> { let _guard = asynch::REGION_ACCESS.lock().await; unsafe { asynch::write_chunked(self.0.base, self.0.size, offset, bytes).await } } pub async fn erase(&mut self, from: u32, to: u32) -> Result<(), Error> { let _guard = asynch::REGION_ACCESS.lock().await; unsafe { asynch::erase_sectored(self.0.base, from, to).await } } } impl embedded_storage::nor_flash::ErrorType for $type_name<'_, MODE> { type Error = Error; } impl embedded_storage::nor_flash::ReadNorFlash for $type_name<'_, MODE> { const READ_SIZE: usize = crate::flash::READ_SIZE; fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> { self.blocking_read(offset, bytes) } fn capacity(&self) -> usize { self.0.size as usize } } #[cfg(feature = "nightly")] impl embedded_storage_async::nor_flash::ReadNorFlash for $type_name<'_, Async> { const READ_SIZE: usize = crate::flash::READ_SIZE; async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> { self.read(offset, bytes).await } fn capacity(&self) -> usize { self.0.size as usize } } #[cfg(feature = "nightly")] impl embedded_storage_async::nor_flash::NorFlash for $type_name<'_, Async> { const WRITE_SIZE: usize = $region.write_size as usize; const ERASE_SIZE: usize = $region.erase_size as usize; async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> { self.write(offset, bytes).await } async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> { self.erase(from, to).await } } }; } foreach_altflash_region!(AltBank1Region3, ALT_BANK1_REGION3); foreach_altflash_region!(AltBank2Region1, ALT_BANK2_REGION1); foreach_altflash_region!(AltBank2Region2, ALT_BANK2_REGION2); foreach_altflash_region!(AltBank2Region3, ALT_BANK2_REGION3); } #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))] pub use alt_regions::*; static WAKER: AtomicWaker = AtomicWaker::new(); static DATA_CACHE_WAS_ENABLED: AtomicBool = AtomicBool::new(false); impl FlashSector { const fn snb(&self) -> u8 { ((self.bank as u8) << 4) + self.index_in_bank } } #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))] pub(crate) fn is_default_layout() -> bool { unsafe { !pac::FLASH.optcr().read().db1m() } } #[cfg(not(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479)))] pub(crate) const fn is_default_layout() -> bool { true } #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479))] pub fn get_flash_regions() -> &'static [&'static FlashRegion] { if is_default_layout() { &FLASH_REGIONS } else { &ALT_FLASH_REGIONS } } #[cfg(not(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f469, stm32f479)))] pub const fn get_flash_regions() -> &'static [&'static FlashRegion] { &FLASH_REGIONS } pub(crate) unsafe fn on_interrupt() { // Clear IRQ flags pac::FLASH.sr().write(|w| { w.set_operr(true); w.set_eop(true); }); WAKER.wake(); } pub(crate) unsafe fn lock() { pac::FLASH.cr().modify(|w| w.set_lock(true)); } pub(crate) unsafe fn unlock() { pac::FLASH.keyr().write(|w| w.set_key(0x45670123)); pac::FLASH.keyr().write(|w| w.set_key(0xCDEF89AB)); } pub(crate) unsafe fn enable_write() { assert_eq!(0, WRITE_SIZE % 4); save_data_cache_state(); pac::FLASH.cr().write(|w| { w.set_pg(true); w.set_psize(pac::flash::vals::Psize::PSIZE32); w.set_eopie(true); w.set_errie(true); }); } pub(crate) unsafe fn disable_write() { pac::FLASH.cr().write(|w| { w.set_pg(false); w.set_eopie(false); w.set_errie(false); }); restore_data_cache_state(); } pub(crate) unsafe fn enable_blocking_write() { assert_eq!(0, WRITE_SIZE % 4); save_data_cache_state(); pac::FLASH.cr().write(|w| { w.set_pg(true); w.set_psize(pac::flash::vals::Psize::PSIZE32); }); } pub(crate) unsafe fn disable_blocking_write() { pac::FLASH.cr().write(|w| w.set_pg(false)); restore_data_cache_state(); } pub(crate) async unsafe fn write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { write_start(start_address, buf); wait_ready().await } pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { write_start(start_address, buf); blocking_wait_ready() } unsafe fn write_start(start_address: u32, buf: &[u8; WRITE_SIZE]) { let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(val.try_into().unwrap())); address += val.len() as u32; // prevents parallelism errors fence(Ordering::SeqCst); } } pub(crate) async unsafe fn erase_sector(sector: &FlashSector) -> Result<(), Error> { save_data_cache_state(); trace!("Erasing sector number {}", sector.snb()); pac::FLASH.cr().modify(|w| { w.set_ser(true); w.set_snb(sector.snb()); w.set_eopie(true); w.set_errie(true); }); pac::FLASH.cr().modify(|w| { w.set_strt(true); }); let ret: Result<(), Error> = wait_ready().await; pac::FLASH.cr().modify(|w| { w.set_eopie(false); w.set_errie(false); }); clear_all_err(); restore_data_cache_state(); ret } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { save_data_cache_state(); trace!("Blocking erasing sector number {}", sector.snb()); pac::FLASH.cr().modify(|w| { w.set_ser(true); w.set_snb(sector.snb()) }); pac::FLASH.cr().modify(|w| { w.set_strt(true); }); let ret: Result<(), Error> = blocking_wait_ready(); clear_all_err(); restore_data_cache_state(); ret } pub(crate) unsafe fn clear_all_err() { pac::FLASH.sr().write(|w| { w.set_pgserr(true); w.set_pgperr(true); w.set_pgaerr(true); w.set_wrperr(true); }); } pub(crate) async unsafe fn wait_ready() -> Result<(), Error> { use core::task::Poll; use futures::future::poll_fn; poll_fn(|cx| { WAKER.register(cx.waker()); let sr = pac::FLASH.sr().read(); if !sr.bsy() { Poll::Ready(get_result(sr)) } else { return Poll::Pending; } }) .await } unsafe fn blocking_wait_ready() -> Result<(), Error> { loop { let sr = pac::FLASH.sr().read(); if !sr.bsy() { return get_result(sr); } } } fn get_result(sr: Sr) -> Result<(), Error> { if sr.pgserr() { Err(Error::Seq) } else if sr.pgperr() { Err(Error::Parallelism) } else if sr.pgaerr() { Err(Error::Unaligned) } else if sr.wrperr() { Err(Error::Protected) } else { Ok(()) } } fn save_data_cache_state() { let dual_bank = get_flash_regions().last().unwrap().bank == FlashBank::Bank2; if dual_bank { // Disable data cache during write/erase if there are two banks, see errata 2.2.12 let dcen = unsafe { pac::FLASH.acr().read().dcen() }; DATA_CACHE_WAS_ENABLED.store(dcen, Ordering::Relaxed); if dcen { unsafe { pac::FLASH.acr().modify(|w| w.set_dcen(false)) }; } } } fn restore_data_cache_state() { let dual_bank = get_flash_regions().last().unwrap().bank == FlashBank::Bank2; if dual_bank { // Restore data cache if it was enabled let dcen = DATA_CACHE_WAS_ENABLED.load(Ordering::Relaxed); if dcen { unsafe { // Reset data cache before we enable it again pac::FLASH.acr().modify(|w| w.set_dcrst(true)); pac::FLASH.acr().modify(|w| w.set_dcrst(false)); pac::FLASH.acr().modify(|w| w.set_dcen(true)) }; } } } pub(crate) fn assert_not_corrupted_read(end_address: u32) { #[allow(unused)] const REVISION_3: u16 = 0x2001; #[allow(unused)] let second_bank_read = get_flash_regions().last().unwrap().bank == FlashBank::Bank2 && end_address > (FLASH_SIZE / 2) as u32; #[cfg(any( feature = "stm32f427ai", feature = "stm32f427ii", feature = "stm32f427vi", feature = "stm32f427zi", feature = "stm32f429ai", feature = "stm32f429bi", feature = "stm32f429ii", feature = "stm32f429ni", feature = "stm32f429vi", feature = "stm32f429zi", feature = "stm32f437ai", feature = "stm32f437ii", feature = "stm32f437vi", feature = "stm32f437zi", feature = "stm32f439ai", feature = "stm32f439bi", feature = "stm32f439ii", feature = "stm32f439ni", feature = "stm32f439vi", feature = "stm32f439zi", ))] if second_bank_read && unsafe { pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() } { panic!("Read corruption for stm32f42xxI and stm32f43xxI when PA12 is in use for chips below revision 3, see errata 2.2.11"); } #[cfg(any( feature = "stm32f427ag", feature = "stm32f427ig", feature = "stm32f427vg", feature = "stm32f427zg", feature = "stm32f429ag", feature = "stm32f429bg", feature = "stm32f429ig", feature = "stm32f429ng", feature = "stm32f429vg", feature = "stm32f429zg", feature = "stm32f437ig", feature = "stm32f437vg", feature = "stm32f437zg", feature = "stm32f439bg", feature = "stm32f439ig", feature = "stm32f439ng", feature = "stm32f439vg", feature = "stm32f439zg", ))] if second_bank_read && unsafe { pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() } { panic!("Read corruption for stm32f42xxG and stm32f43xxG in dual bank mode when PA12 is in use for chips below revision 3, see errata 2.2.11"); } } #[allow(unused)] fn pa12_is_output_pull_low() -> bool { use pac::gpio::vals; use pac::GPIOA; const PIN: usize = 12; unsafe { GPIOA.moder().read().moder(PIN) == vals::Moder::OUTPUT && GPIOA.pupdr().read().pupdr(PIN) == vals::Pupdr::PULLDOWN && GPIOA.odr().read().odr(PIN) == vals::Odr::LOW } } #[cfg(test)] mod tests { use super::*; use crate::flash::{get_sector, FlashBank}; #[test] #[cfg(stm32f429)] fn can_get_sector() { const SMALL_SECTOR_SIZE: u32 = 16 * 1024; const MEDIUM_SECTOR_SIZE: u32 = 64 * 1024; const LARGE_SECTOR_SIZE: u32 = 128 * 1024; let assert_sector = |snb: u8, index_in_bank: u8, start: u32, size: u32, address: u32| { let sector = get_sector(address, &FLASH_REGIONS); assert_eq!(snb, sector.snb()); assert_eq!( FlashSector { bank: FlashBank::Bank1, index_in_bank, start, size }, sector ); }; assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000); assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF); assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000); assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF); assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000); assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF); assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000); assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF); assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000); assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF); let assert_sector = |snb: u8, bank: FlashBank, index_in_bank: u8, start: u32, size: u32, address: u32| { let sector = get_sector(address, &ALT_FLASH_REGIONS); assert_eq!(snb, sector.snb()); assert_eq!( FlashSector { bank, index_in_bank, start, size }, sector ) }; assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000); assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF); assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000); assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF); assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000); assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF); assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000); assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF); assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0806_0000); assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF); assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_0000); assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_3FFF); assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_C000); assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_FFFF); assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_0000); assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_FFFF); assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080A_0000); assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080B_FFFF); assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000); assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF); } }