#![macro_use] use core::sync::atomic::{compiler_fence, Ordering}; use core::task::Poll; use embassy_hal_common::{impl_peripheral, into_ref, PeripheralRef}; use embassy_util::waitqueue::AtomicWaker; use futures::future::poll_fn; use pac::{saadc, SAADC}; use saadc::ch::config::{GAIN_A, REFSEL_A, RESP_A, TACQ_A}; // We treat the positive and negative channels with the same enum values to keep our type tidy and given they are the same pub(crate) use saadc::ch::pselp::PSELP_A as InputChannel; use saadc::oversample::OVERSAMPLE_A; use saadc::resolution::VAL_A; use self::sealed::Input as _; use crate::interrupt::InterruptExt; use crate::ppi::{ConfigurableChannel, Event, Ppi, Task}; use crate::timer::{Frequency, Instance as TimerInstance, Timer}; use crate::{interrupt, pac, peripherals, Peripheral}; #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error {} /// One-shot and continuous SAADC. pub struct Saadc<'d, const N: usize> { _p: PeripheralRef<'d, peripherals::SAADC>, } static WAKER: AtomicWaker = AtomicWaker::new(); /// Used to configure the SAADC peripheral. /// /// See the `Default` impl for suitable default values. #[non_exhaustive] pub struct Config { /// Output resolution in bits. pub resolution: Resolution, /// Average 2^`oversample` input samples before transferring the result into memory. pub oversample: Oversample, } impl Default for Config { /// Default configuration for single channel sampling. fn default() -> Self { Self { resolution: Resolution::_12BIT, oversample: Oversample::BYPASS, } } } /// Used to configure an individual SAADC peripheral channel. /// /// See the `Default` impl for suitable default values. #[non_exhaustive] pub struct ChannelConfig<'d> { /// Reference voltage of the SAADC input. pub reference: Reference, /// Gain used to control the effective input range of the SAADC. pub gain: Gain, /// Positive channel resistor control. pub resistor: Resistor, /// Acquisition time in microseconds. pub time: Time, /// Positive channel to sample p_channel: PeripheralRef<'d, AnyInput>, /// An optional negative channel to sample n_channel: Option>, } impl<'d> ChannelConfig<'d> { /// Default configuration for single ended channel sampling. pub fn single_ended(input: impl Peripheral

+ 'd) -> Self { into_ref!(input); Self { reference: Reference::INTERNAL, gain: Gain::GAIN1_6, resistor: Resistor::BYPASS, time: Time::_10US, p_channel: input.map_into(), n_channel: None, } } /// Default configuration for differential channel sampling. pub fn differential( p_input: impl Peripheral

+ 'd, n_input: impl Peripheral

+ 'd, ) -> Self { into_ref!(p_input, n_input); Self { reference: Reference::INTERNAL, gain: Gain::GAIN1_6, resistor: Resistor::BYPASS, time: Time::_10US, p_channel: p_input.map_into(), n_channel: Some(n_input.map_into()), } } } /// The state of a continuously running sampler. While it reflects /// the progress of a sampler, it also signals what should be done /// next. For example, if the sampler has stopped then the Saadc implementation /// can then tear down its infrastructure. #[derive(PartialEq)] pub enum SamplerState { Sampled, Stopped, } impl<'d, const N: usize> Saadc<'d, N> { pub fn new( saadc: impl Peripheral

+ 'd, irq: impl Peripheral

+ 'd, config: Config, channel_configs: [ChannelConfig; N], ) -> Self { into_ref!(saadc, irq); let r = unsafe { &*SAADC::ptr() }; let Config { resolution, oversample } = config; // Configure channels r.enable.write(|w| w.enable().enabled()); r.resolution.write(|w| w.val().variant(resolution.into())); r.oversample.write(|w| w.oversample().variant(oversample.into())); for (i, cc) in channel_configs.iter().enumerate() { r.ch[i].pselp.write(|w| w.pselp().variant(cc.p_channel.channel())); if let Some(n_channel) = &cc.n_channel { r.ch[i] .pseln .write(|w| unsafe { w.pseln().bits(n_channel.channel() as u8) }); } r.ch[i].config.write(|w| { w.refsel().variant(cc.reference.into()); w.gain().variant(cc.gain.into()); w.tacq().variant(cc.time.into()); if cc.n_channel.is_none() { w.mode().se(); } else { w.mode().diff(); } w.resp().variant(cc.resistor.into()); w.resn().bypass(); if !matches!(oversample, Oversample::BYPASS) { w.burst().enabled(); } else { w.burst().disabled(); } w }); } // Disable all events interrupts r.intenclr.write(|w| unsafe { w.bits(0x003F_FFFF) }); irq.set_handler(Self::on_interrupt); irq.unpend(); irq.enable(); Self { _p: saadc } } fn on_interrupt(_ctx: *mut ()) { let r = Self::regs(); if r.events_calibratedone.read().bits() != 0 { r.intenclr.write(|w| w.calibratedone().clear()); WAKER.wake(); } if r.events_end.read().bits() != 0 { r.intenclr.write(|w| w.end().clear()); WAKER.wake(); } if r.events_started.read().bits() != 0 { r.intenclr.write(|w| w.started().clear()); WAKER.wake(); } } fn regs() -> &'static saadc::RegisterBlock { unsafe { &*SAADC::ptr() } } /// Perform SAADC calibration. Completes when done. pub async fn calibrate(&self) { let r = Self::regs(); // Reset and enable the end event r.events_calibratedone.reset(); r.intenset.write(|w| w.calibratedone().set()); // Order is important compiler_fence(Ordering::SeqCst); r.tasks_calibrateoffset.write(|w| unsafe { w.bits(1) }); // Wait for 'calibratedone' event. poll_fn(|cx| { let r = Self::regs(); WAKER.register(cx.waker()); if r.events_calibratedone.read().bits() != 0 { r.events_calibratedone.reset(); return Poll::Ready(()); } Poll::Pending }) .await; } /// One shot sampling. The buffer must be the same size as the number of channels configured. pub async fn sample(&mut self, buf: &mut [i16; N]) { let r = Self::regs(); // Set up the DMA r.result.ptr.write(|w| unsafe { w.ptr().bits(buf.as_mut_ptr() as u32) }); r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits(N as _) }); // Reset and enable the end event r.events_end.reset(); r.intenset.write(|w| w.end().set()); // Don't reorder the ADC start event before the previous writes. Hopefully self // wouldn't happen anyway. compiler_fence(Ordering::SeqCst); r.tasks_start.write(|w| unsafe { w.bits(1) }); r.tasks_sample.write(|w| unsafe { w.bits(1) }); // Wait for 'end' event. poll_fn(|cx| { let r = Self::regs(); WAKER.register(cx.waker()); if r.events_end.read().bits() != 0 { r.events_end.reset(); return Poll::Ready(()); } Poll::Pending }) .await; } /// Continuous sampling with double buffers. /// /// A TIMER and two PPI peripherals are passed in so that precise sampling /// can be attained. The sampling interval is expressed by selecting a /// timer clock frequency to use along with a counter threshold to be reached. /// For example, 1KHz can be achieved using a frequency of 1MHz and a counter /// threshold of 1000. /// /// A sampler closure is provided that receives the buffer of samples, noting /// that the size of this buffer can be less than the original buffer's size. /// A command is return from the closure that indicates whether the sampling /// should continue or stop. /// /// NOTE: The time spent within the callback supplied should not exceed the time /// taken to acquire the samples into a single buffer. You should measure the /// time taken by the callback and set the sample buffer size accordingly. /// Exceeding this time can lead to samples becoming dropped. pub async fn run_task_sampler( &mut self, timer: &mut T, ppi_ch1: &mut impl ConfigurableChannel, ppi_ch2: &mut impl ConfigurableChannel, frequency: Frequency, sample_counter: u32, bufs: &mut [[[i16; N]; N0]; 2], sampler: S, ) where S: FnMut(&[[i16; N]]) -> SamplerState, { let r = Self::regs(); // We want the task start to effectively short with the last one ending so // we don't miss any samples. It'd be great for the SAADC to offer a SHORTS // register instead, but it doesn't, so we must use PPI. let mut start_ppi = Ppi::new_one_to_one(ppi_ch1, Event::from_reg(&r.events_end), Task::from_reg(&r.tasks_start)); start_ppi.enable(); let mut timer = Timer::new(timer); timer.set_frequency(frequency); timer.cc(0).write(sample_counter); timer.cc(0).short_compare_clear(); let mut sample_ppi = Ppi::new_one_to_one(ppi_ch2, timer.cc(0).event_compare(), Task::from_reg(&r.tasks_sample)); timer.start(); self.run_sampler( bufs, None, || { sample_ppi.enable(); }, sampler, ) .await; } async fn run_sampler( &mut self, bufs: &mut [[[i16; N]; N0]; 2], sample_rate_divisor: Option, mut init: I, mut sampler: S, ) where I: FnMut(), S: FnMut(&[[i16; N]]) -> SamplerState, { let r = Self::regs(); // Establish mode and sample rate match sample_rate_divisor { Some(sr) => { r.samplerate.write(|w| unsafe { w.cc().bits(sr); w.mode().timers(); w }); r.tasks_sample.write(|w| unsafe { w.bits(1) }); // Need to kick-start the internal timer } None => r.samplerate.write(|w| unsafe { w.cc().bits(0); w.mode().task(); w }), } // Set up the initial DMA r.result .ptr .write(|w| unsafe { w.ptr().bits(bufs[0].as_mut_ptr() as u32) }); r.result.maxcnt.write(|w| unsafe { w.maxcnt().bits((N0 * N) as _) }); // Reset and enable the events r.events_end.reset(); r.events_started.reset(); r.intenset.write(|w| { w.end().set(); w.started().set(); w }); // Don't reorder the ADC start event before the previous writes. Hopefully self // wouldn't happen anyway. compiler_fence(Ordering::SeqCst); r.tasks_start.write(|w| unsafe { w.bits(1) }); let mut inited = false; let mut current_buffer = 0; // Wait for events and complete when the sampler indicates it has had enough. poll_fn(|cx| { let r = Self::regs(); WAKER.register(cx.waker()); if r.events_end.read().bits() != 0 { compiler_fence(Ordering::SeqCst); r.events_end.reset(); r.intenset.write(|w| w.end().set()); if sampler(&bufs[current_buffer]) == SamplerState::Sampled { let next_buffer = 1 - current_buffer; current_buffer = next_buffer; } else { return Poll::Ready(()); }; } if r.events_started.read().bits() != 0 { r.events_started.reset(); r.intenset.write(|w| w.started().set()); if !inited { init(); inited = true; } let next_buffer = 1 - current_buffer; r.result .ptr .write(|w| unsafe { w.ptr().bits(bufs[next_buffer].as_mut_ptr() as u32) }); } Poll::Pending }) .await; } } impl<'d> Saadc<'d, 1> { /// Continuous sampling on a single channel with double buffers. /// /// The internal clock is to be used with a sample rate expressed as a divisor of /// 16MHz, ranging from 80..2047. For example, 1600 represents a sample rate of 10KHz /// given 16_000_000 / 10_000_000 = 1600. /// /// A sampler closure is provided that receives the buffer of samples, noting /// that the size of this buffer can be less than the original buffer's size. /// A command is return from the closure that indicates whether the sampling /// should continue or stop. pub async fn run_timer_sampler( &mut self, bufs: &mut [[[i16; 1]; N0]; 2], sample_rate_divisor: u16, sampler: S, ) where S: FnMut(&[[i16; 1]]) -> SamplerState, { self.run_sampler(bufs, Some(sample_rate_divisor), || {}, sampler).await; } } impl<'d, const N: usize> Drop for Saadc<'d, N> { fn drop(&mut self) { let r = Self::regs(); r.enable.write(|w| w.enable().disabled()); } } impl From for GAIN_A { fn from(gain: Gain) -> Self { match gain { Gain::GAIN1_6 => GAIN_A::GAIN1_6, Gain::GAIN1_5 => GAIN_A::GAIN1_5, Gain::GAIN1_4 => GAIN_A::GAIN1_4, Gain::GAIN1_3 => GAIN_A::GAIN1_3, Gain::GAIN1_2 => GAIN_A::GAIN1_2, Gain::GAIN1 => GAIN_A::GAIN1, Gain::GAIN2 => GAIN_A::GAIN2, Gain::GAIN4 => GAIN_A::GAIN4, } } } /// Gain control #[non_exhaustive] #[derive(Clone, Copy)] pub enum Gain { /// 1/6 GAIN1_6 = 0, /// 1/5 GAIN1_5 = 1, /// 1/4 GAIN1_4 = 2, /// 1/3 GAIN1_3 = 3, /// 1/2 GAIN1_2 = 4, /// 1 GAIN1 = 5, /// 2 GAIN2 = 6, /// 4 GAIN4 = 7, } impl From for REFSEL_A { fn from(reference: Reference) -> Self { match reference { Reference::INTERNAL => REFSEL_A::INTERNAL, Reference::VDD1_4 => REFSEL_A::VDD1_4, } } } /// Reference control #[non_exhaustive] #[derive(Clone, Copy)] pub enum Reference { /// Internal reference (0.6 V) INTERNAL = 0, /// VDD/4 as reference VDD1_4 = 1, } impl From for RESP_A { fn from(resistor: Resistor) -> Self { match resistor { Resistor::BYPASS => RESP_A::BYPASS, Resistor::PULLDOWN => RESP_A::PULLDOWN, Resistor::PULLUP => RESP_A::PULLUP, Resistor::VDD1_2 => RESP_A::VDD1_2, } } } /// Positive channel resistor control #[non_exhaustive] #[derive(Clone, Copy)] pub enum Resistor { /// Bypass resistor ladder BYPASS = 0, /// Pull-down to GND PULLDOWN = 1, /// Pull-up to VDD PULLUP = 2, /// Set input at VDD/2 VDD1_2 = 3, } impl From

+ Sized + 'static { fn degrade_saadc(self) -> AnyInput { AnyInput { channel: self.channel(), } } } pub struct AnyInput { channel: InputChannel, } impl_peripheral!(AnyInput); impl sealed::Input for AnyInput { fn channel(&self) -> InputChannel { self.channel } } impl Input for AnyInput {} macro_rules! impl_saadc_input { ($pin:ident, $ch:ident) => { impl_saadc_input!(@local, crate::peripherals::$pin, $ch); }; (@local, $pin:ty, $ch:ident) => { impl crate::saadc::sealed::Input for $pin { fn channel(&self) -> crate::saadc::InputChannel { crate::saadc::InputChannel::$ch } } impl crate::saadc::Input for $pin {} impl From<$pin> for crate::saadc::AnyInput { fn from(val: $pin) -> Self { crate::saadc::Input::degrade_saadc(val) } } }; } /// A dummy `Input` pin implementation for SAADC peripheral sampling from the /// internal voltage. pub struct VddInput; impl_peripheral!(VddInput); #[cfg(not(feature = "_nrf9160"))] impl_saadc_input!(@local, VddInput, VDD); #[cfg(feature = "_nrf9160")] impl_saadc_input!(@local, VddInput, VDDGPIO); /// A dummy `Input` pin implementation for SAADC peripheral sampling from the /// VDDH / 5 voltage. #[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))] pub struct VddhDiv5Input; #[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))] impl_peripheral!(VddhDiv5Input); #[cfg(any(feature = "_nrf5340-app", feature = "nrf52833", feature = "nrf52840"))] impl_saadc_input!(@local, VddhDiv5Input, VDDHDIV5);