use embassy_hal_common::{into_ref, PeripheralRef}; use pac::clocks::vals::*; use crate::{pac, reset, Peripheral}; // TODO fix terrible use of global here static mut XIN_HZ: u32 = 0; pub use rp_pac::clocks::vals::{ ClkAdcCtrlAuxsrc as AdcAuxsrc, ClkGpoutCtrlAuxsrc as GpoutSrc, ClkPeriCtrlAuxsrc as PeriClkAuxsrc, ClkRefCtrlAuxsrc as RefAuxsrc, ClkRtcCtrlAuxsrc as RtcAuxsrc, ClkSysCtrlAuxsrc as SysAuxsrc, ClkUsbCtrlAuxsrc as UsbAuxsrc, }; #[non_exhaustive] pub struct ClockConfig { pub rosc: Option, pub xosc: Option, pub ref_clk: RefClkConfig, pub sys_clk: SysClkConfig, pub peri_clk_src: Option, pub usb_clk: Option, pub adc_clk: Option, pub rtc_clk: Option, } impl ClockConfig { pub fn crystal(crystal_hz: u32) -> Self { Self { rosc: Some(RoscConfig { range: pac::rosc::vals::FreqRange::MEDIUM, drive_strength: [0; 8], div: 16, }), xosc: Some(XoscConfig { hz: crystal_hz, clock_type: ExternalClock::Crystal, sys_pll: Some(PllConfig { refdiv: 1, vco_freq: 1500_000_000, post_div1: 6, post_div2: 2, }), usb_pll: Some(PllConfig { refdiv: 1, vco_freq: 480_000_000, post_div1: 5, post_div2: 2, }), }), ref_clk: RefClkConfig { src: RefClkSrc::Xosc, div: 1, }, sys_clk: SysClkConfig { src: SysClkSrc::Aux(ClkSysCtrlAuxsrc::CLKSRC_PLL_SYS), div_int: 1, div_frac: 0, }, peri_clk_src: Some(ClkPeriCtrlAuxsrc::CLK_SYS), usb_clk: Some(UsbClkConfig { src: ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB, div: 1, phase: 0, }), adc_clk: Some(AdcClkConfig { src: ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB, div: 1, phase: 0, }), rtc_clk: Some(RtcClkConfig { src: ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB, div_int: 1024, div_frac: 0, phase: 0, }), } } pub fn rosc() -> Self { Self { rosc: Some(RoscConfig { range: pac::rosc::vals::FreqRange::HIGH, drive_strength: [0; 8], div: 1, }), xosc: None, ref_clk: RefClkConfig { src: RefClkSrc::Rosc, div: 1, }, sys_clk: SysClkConfig { src: SysClkSrc::Aux(ClkSysCtrlAuxsrc::ROSC_CLKSRC), div_int: 1, div_frac: 0, }, peri_clk_src: Some(ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH), usb_clk: None, adc_clk: Some(AdcClkConfig { src: ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH, div: 1, phase: 0, }), rtc_clk: Some(RtcClkConfig { src: ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH, div_int: 1024, div_frac: 0, phase: 0, }), } } } pub struct RoscConfig { pub range: pac::rosc::vals::FreqRange, pub drive_strength: [u8; 8], pub div: u16, } pub struct XoscConfig { pub hz: u32, pub clock_type: ExternalClock, pub sys_pll: Option, pub usb_pll: Option, } pub struct PllConfig { pub refdiv: u32, pub vco_freq: u32, pub post_div1: u8, pub post_div2: u8, } pub enum ExternalClock { Crystal, Clock, } pub struct RefClkConfig { pub src: RefClkSrc, pub div: u8, } pub enum RefClkSrc { Xosc, Rosc, Aux(ClkRefCtrlAuxsrc), } pub enum SysClkSrc { Ref, Aux(ClkSysCtrlAuxsrc), } pub struct SysClkConfig { pub src: SysClkSrc, pub div_int: u32, pub div_frac: u8, } pub struct UsbClkConfig { pub src: ClkUsbCtrlAuxsrc, pub div: u8, pub phase: u8, } pub struct AdcClkConfig { pub src: ClkAdcCtrlAuxsrc, pub div: u8, pub phase: u8, } pub struct RtcClkConfig { pub src: ClkRtcCtrlAuxsrc, pub div_int: u32, pub div_frac: u8, pub phase: u8, } /// safety: must be called exactly once at bootup pub(crate) unsafe fn init(config: ClockConfig) { // Reset everything except: // - QSPI (we're using it to run this code!) // - PLLs (it may be suicide if that's what's clocking us) // - USB, SYSCFG (breaks usb-to-swd on core1) let mut peris = reset::ALL_PERIPHERALS; peris.set_io_qspi(false); peris.set_pads_qspi(false); peris.set_pll_sys(false); peris.set_pll_usb(false); // TODO investigate if usb should be unreset here peris.set_usbctrl(false); peris.set_syscfg(false); reset::reset(peris); // Disable resus that may be enabled from previous software let c = pac::CLOCKS; c.clk_sys_resus_ctrl() .write_value(pac::clocks::regs::ClkSysResusCtrl(0)); // Before we touch PLLs, switch sys and ref cleanly away from their aux sources. c.clk_sys_ctrl().modify(|w| w.set_src(ClkSysCtrlSrc::CLK_REF)); while c.clk_sys_selected().read() != 1 {} c.clk_ref_ctrl().modify(|w| w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH)); while c.clk_ref_selected().read() != 1 {} if let Some(config) = config.rosc { configure_rosc(config); } if let Some(config) = config.xosc { XIN_HZ = config.hz; pac::WATCHDOG.tick().write(|w| { w.set_cycles((config.hz / 1_000_000) as u16); w.set_enable(true); }); // start XOSC match config.clock_type { ExternalClock::Crystal => start_xosc(config.hz), // TODO The datasheet says the xosc needs to be put into a bypass mode to use an // external clock, but is mum about how to do that. ExternalClock::Clock => todo!(), } if let Some(sys_pll_config) = config.sys_pll { configure_pll(pac::PLL_SYS, config.hz, sys_pll_config); } if let Some(usb_pll_config) = config.usb_pll { configure_pll(pac::PLL_USB, config.hz, usb_pll_config); } } match config.ref_clk.src { RefClkSrc::Xosc => { c.clk_ref_ctrl().write(|w| { w.set_src(ClkRefCtrlSrc::XOSC_CLKSRC); }); while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::XOSC_CLKSRC.0 {} } RefClkSrc::Rosc => { c.clk_ref_ctrl().write(|w| { w.set_src(ClkRefCtrlSrc::ROSC_CLKSRC_PH); }); while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::ROSC_CLKSRC_PH.0 {} } RefClkSrc::Aux(src) => { c.clk_ref_ctrl().write(|w| { w.set_auxsrc(src); w.set_src(ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX); }); while c.clk_ref_selected().read() != 1 << ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX.0 {} } } c.clk_ref_div().write(|w| { w.set_int(config.ref_clk.div); }); pac::WATCHDOG.tick().write(|w| { w.set_cycles((clk_ref_freq() / 1_000_000) as u16); w.set_enable(true); }); match config.sys_clk.src { SysClkSrc::Ref => { c.clk_sys_ctrl().write(|w| { w.set_src(ClkSysCtrlSrc::CLK_REF); }); while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {} } SysClkSrc::Aux(src) => { c.clk_sys_ctrl().write(|w| { w.set_src(ClkSysCtrlSrc::CLK_REF); }); while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLK_REF.0 {} c.clk_sys_ctrl().write(|w| { w.set_auxsrc(src); w.set_src(ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX); }); while c.clk_sys_selected().read() != 1 << ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX.0 {} } } c.clk_sys_div().write(|w| { w.set_int(config.sys_clk.div_int); w.set_frac(config.sys_clk.div_frac); }); let mut peris = reset::ALL_PERIPHERALS; if let Some(src) = config.peri_clk_src { c.clk_peri_ctrl().write(|w| { w.set_enable(true); w.set_auxsrc(src); }); } else { peris.set_spi0(false); peris.set_spi1(false); peris.set_uart0(false); peris.set_uart1(false); } if let Some(conf) = config.usb_clk { // CLK USB = PLL USB (48MHz) / 1 = 48MHz c.clk_usb_div().write(|w| w.set_int(conf.div)); c.clk_usb_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(conf.src); }); } else { peris.set_usbctrl(false); } if let Some(conf) = config.adc_clk { // CLK ADC = PLL USB (48MHZ) / 1 = 48MHz c.clk_adc_div().write(|w| w.set_int(conf.div)); c.clk_adc_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(conf.src); }); } else { peris.set_adc(false); } if let Some(conf) = config.rtc_clk { // CLK RTC = PLL USB (48MHz) / 1024 = 46875Hz c.clk_rtc_ctrl().modify(|w| { w.set_enable(false); }); c.clk_rtc_div().write(|w| { w.set_int(conf.div_int); w.set_frac(conf.div_frac); }); c.clk_rtc_ctrl().write(|w| { w.set_phase(conf.phase); w.set_enable(true); w.set_auxsrc(conf.src); }); } else { peris.set_rtc(false); } // Peripheral clocks should now all be running reset::unreset_wait(peris); } unsafe fn configure_rosc(config: RoscConfig) { let p = pac::ROSC; p.freqa().write(|w| { w.set_passwd(pac::rosc::vals::Passwd::PASS); w.set_ds0(config.drive_strength[0]); w.set_ds1(config.drive_strength[1]); w.set_ds2(config.drive_strength[2]); w.set_ds3(config.drive_strength[3]); }); p.freqb().write(|w| { w.set_passwd(pac::rosc::vals::Passwd::PASS); w.set_ds4(config.drive_strength[4]); w.set_ds5(config.drive_strength[5]); w.set_ds6(config.drive_strength[6]); w.set_ds7(config.drive_strength[7]); }); p.div().write(|w| { w.set_div(pac::rosc::vals::Div(config.div + pac::rosc::vals::Div::PASS.0)); }); p.ctrl().write(|w| { w.set_enable(pac::rosc::vals::Enable::ENABLE); w.set_freq_range(config.range); }); } pub fn estimate_rosc_freq() -> u32 { let p = pac::ROSC; let base = match unsafe { p.ctrl().read().freq_range() } { pac::rosc::vals::FreqRange::LOW => 84_000_000, pac::rosc::vals::FreqRange::MEDIUM => 104_000_000, pac::rosc::vals::FreqRange::HIGH => 140_000_000, pac::rosc::vals::FreqRange::TOOHIGH => 208_000_000, _ => unreachable!(), }; let mut div = unsafe { p.div().read().0 - pac::rosc::vals::Div::PASS.0 as u32 }; if div == 0 { div = 32 } base / div } pub fn xosc_freq() -> u32 { unsafe { XIN_HZ } } pub fn gpin0_freq() -> u32 { todo!() } pub fn gpin1_freq() -> u32 { todo!() } pub fn pll_sys_freq() -> u32 { let p = pac::PLL_SYS; let input_freq = xosc_freq(); let cs = unsafe { p.cs().read() }; let refdiv = cs.refdiv() as u32; let fbdiv = unsafe { p.fbdiv_int().read().fbdiv_int() } as u32; let (postdiv1, postdiv2) = unsafe { let prim = p.prim().read(); (prim.postdiv1() as u32, prim.postdiv2() as u32) }; (((input_freq / refdiv) * fbdiv) / postdiv1) / postdiv2 } pub fn pll_usb_freq() -> u32 { let p = pac::PLL_USB; let input_freq = xosc_freq(); let cs = unsafe { p.cs().read() }; let refdiv = cs.refdiv() as u32; let fbdiv = unsafe { p.fbdiv_int().read().fbdiv_int() } as u32; let (postdiv1, postdiv2) = unsafe { let prim = p.prim().read(); (prim.postdiv1() as u32, prim.postdiv2() as u32) }; (((input_freq / refdiv) * fbdiv) / postdiv1) / postdiv2 } pub fn clk_sys_freq() -> u32 { let c = pac::CLOCKS; let ctrl = unsafe { c.clk_sys_ctrl().read() }; let base = match ctrl.src() { ClkSysCtrlSrc::CLK_REF => clk_ref_freq(), ClkSysCtrlSrc::CLKSRC_CLK_SYS_AUX => match ctrl.auxsrc() { ClkSysCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkSysCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkSysCtrlAuxsrc::ROSC_CLKSRC => estimate_rosc_freq(), ClkSysCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkSysCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkSysCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), }, _ => unreachable!(), }; let div = unsafe { c.clk_sys_div().read() }; let int = if div.int() == 0 { 65536 } else { div.int() }; // TODO handle fractional clock div let _frac = div.frac(); base / int } pub fn clk_ref_freq() -> u32 { let c = pac::CLOCKS; let ctrl = unsafe { c.clk_ref_ctrl().read() }; let base = match ctrl.src() { ClkRefCtrlSrc::ROSC_CLKSRC_PH => estimate_rosc_freq(), ClkRefCtrlSrc::XOSC_CLKSRC => xosc_freq(), ClkRefCtrlSrc::CLKSRC_CLK_REF_AUX => match ctrl.auxsrc() { ClkRefCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkRefCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkRefCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), }, _ => unreachable!(), }; let div = unsafe { c.clk_ref_div().read() }; let int = if div.int() == 0 { 4 } else { div.int() as u32 }; base / int } pub fn clk_peri_freq() -> u32 { let c = pac::CLOCKS; let src = unsafe { c.clk_peri_ctrl().read().auxsrc() }; match src { ClkPeriCtrlAuxsrc::CLK_SYS => clk_sys_freq(), ClkPeriCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkPeriCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkPeriCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(), ClkPeriCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkPeriCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkPeriCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), } } pub fn clk_usb_freq() -> u32 { let c = pac::CLOCKS; let ctrl = unsafe { c.clk_usb_ctrl().read() }; let base = match ctrl.auxsrc() { ClkUsbCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkUsbCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkUsbCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(), ClkUsbCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkUsbCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkUsbCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), }; let div = unsafe { c.clk_ref_div().read() }; let int = if div.int() == 0 { 4 } else { div.int() as u32 }; base / int } pub fn clk_adc_freq() -> u32 { let c = pac::CLOCKS; let ctrl = unsafe { c.clk_adc_ctrl().read() }; let base = match ctrl.auxsrc() { ClkAdcCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkAdcCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkAdcCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(), ClkAdcCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkAdcCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkAdcCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), }; let div = unsafe { c.clk_adc_div().read() }; let int = if div.int() == 0 { 4 } else { div.int() as u32 }; base / int } pub fn clk_rtc_freq() -> u32 { let c = pac::CLOCKS; let src = unsafe { c.clk_rtc_ctrl().read().auxsrc() }; let base = match src { ClkRtcCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkRtcCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkRtcCtrlAuxsrc::ROSC_CLKSRC_PH => estimate_rosc_freq(), ClkRtcCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkRtcCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkRtcCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), _ => unreachable!(), }; let div = unsafe { c.clk_rtc_div().read() }; let int = if div.int() == 0 { 65536 } else { div.int() }; // TODO handle fractional clock div let _frac = div.frac(); base / int } unsafe fn start_xosc(crystal_hz: u32) { pac::XOSC .ctrl() .write(|w| w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ)); let startup_delay = ((crystal_hz / 1000) + 128) / 256; pac::XOSC.startup().write(|w| w.set_delay(startup_delay as u16)); pac::XOSC.ctrl().write(|w| { w.set_freq_range(pac::xosc::vals::CtrlFreqRange::_1_15MHZ); w.set_enable(pac::xosc::vals::Enable::ENABLE); }); while !pac::XOSC.status().read().stable() {} } unsafe fn configure_pll(p: pac::pll::Pll, input_freq: u32, config: PllConfig) { let ref_freq = input_freq / config.refdiv; let fbdiv = config.vco_freq / ref_freq; assert!(fbdiv >= 16 && fbdiv <= 320); assert!(config.post_div1 >= 1 && config.post_div1 <= 7); assert!(config.post_div2 >= 1 && config.post_div2 <= 7); assert!(config.post_div2 <= config.post_div1); assert!(ref_freq <= (config.vco_freq / 16)); // do not disrupt PLL that is already correctly configured and operating let cs = p.cs().read(); let prim = p.prim().read(); if cs.lock() && cs.refdiv() == config.refdiv as u8 && p.fbdiv_int().read().fbdiv_int() == fbdiv as u16 && prim.postdiv1() == config.post_div1 && prim.postdiv2() == config.post_div2 { return; } // Reset it let mut peris = reset::Peripherals(0); match p { pac::PLL_SYS => peris.set_pll_sys(true), pac::PLL_USB => peris.set_pll_usb(true), _ => unreachable!(), } reset::reset(peris); reset::unreset_wait(peris); // Load VCO-related dividers before starting VCO p.cs().write(|w| w.set_refdiv(config.refdiv as _)); p.fbdiv_int().write(|w| w.set_fbdiv_int(fbdiv as _)); // Turn on PLL p.pwr().modify(|w| { w.set_pd(false); w.set_vcopd(false); w.set_postdivpd(true); }); // Wait for PLL to lock while !p.cs().read().lock() {} // Wait for PLL to lock p.prim().write(|w| { w.set_postdiv1(config.post_div1); w.set_postdiv2(config.post_div2); }); // Turn on post divider p.pwr().modify(|w| w.set_postdivpd(false)); } pub trait GpinPin: crate::gpio::Pin { fn number(&self) -> usize; } macro_rules! impl_gpinpin { ($name:ident, $pin_num:expr, $gpin_num:expr) => { impl GpinPin for crate::peripherals::$name { fn number(&self) -> usize { $gpin_num } } }; } impl_gpinpin!(PIN_20, 20, 0); impl_gpinpin!(PIN_22, 22, 1); pub struct Gpin<'d, T: GpinPin> { gpin: PeripheralRef<'d, T>, } impl<'d, T: GpinPin> Gpin<'d, T> { pub fn new(gpin: impl Peripheral

+ 'd) -> Self { into_ref!(gpin); unsafe { gpin.io().ctrl().write(|w| w.set_funcsel(0x08)); } Self { gpin } } } impl<'d, T: GpinPin> Drop for Gpin<'d, T> { fn drop(&mut self) { unsafe { self.gpin .io() .ctrl() .write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL.0)); } } } pub trait GpoutPin: crate::gpio::Pin { fn number(&self) -> usize; } macro_rules! impl_gpoutpin { ($name:ident, $gpout_num:expr) => { impl GpoutPin for crate::peripherals::$name { fn number(&self) -> usize { $gpout_num } } }; } impl_gpoutpin!(PIN_21, 0); impl_gpoutpin!(PIN_23, 1); impl_gpoutpin!(PIN_24, 2); impl_gpoutpin!(PIN_25, 3); pub struct Gpout<'d, T: GpoutPin> { gpout: PeripheralRef<'d, T>, } impl<'d, T: GpoutPin> Gpout<'d, T> { pub fn new(gpout: impl Peripheral

+ 'd) -> Self { into_ref!(gpout); unsafe { gpout.io().ctrl().write(|w| w.set_funcsel(0x08)); } Self { gpout } } pub fn set_div(&self, int: u32, frac: u8) { unsafe { let c = pac::CLOCKS; c.clk_gpout_div(self.gpout.number()).write(|w| { w.set_int(int); w.set_frac(frac); }); } } pub fn set_src(&self, src: ClkGpoutCtrlAuxsrc) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_auxsrc(src); }); } } pub fn enable(&self) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_enable(true); }); } } pub fn disable(&self) { unsafe { let c = pac::CLOCKS; c.clk_gpout_ctrl(self.gpout.number()).modify(|w| { w.set_enable(false); }); } } pub fn get_freq(&self) -> u32 { let c = pac::CLOCKS; let src = unsafe { c.clk_gpout_ctrl(self.gpout.number()).read().auxsrc() }; let base = match src { ClkGpoutCtrlAuxsrc::CLKSRC_PLL_SYS => pll_sys_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_GPIN0 => gpin0_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_GPIN1 => gpin1_freq(), ClkGpoutCtrlAuxsrc::CLKSRC_PLL_USB => pll_usb_freq(), ClkGpoutCtrlAuxsrc::ROSC_CLKSRC => estimate_rosc_freq(), ClkGpoutCtrlAuxsrc::XOSC_CLKSRC => xosc_freq(), ClkGpoutCtrlAuxsrc::CLK_SYS => clk_sys_freq(), ClkGpoutCtrlAuxsrc::CLK_USB => clk_usb_freq(), ClkGpoutCtrlAuxsrc::CLK_ADC => clk_adc_freq(), ClkGpoutCtrlAuxsrc::CLK_RTC => clk_rtc_freq(), ClkGpoutCtrlAuxsrc::CLK_REF => clk_ref_freq(), _ => unreachable!(), }; let div = unsafe { c.clk_gpout_div(self.gpout.number()).read() }; let int = if div.int() == 0 { 65536 } else { div.int() }; // TODO handle fractional clock div let _frac = div.frac(); base / int } } impl<'d, T: GpoutPin> Drop for Gpout<'d, T> { fn drop(&mut self) { self.disable(); unsafe { self.gpout .io() .ctrl() .write(|w| w.set_funcsel(pac::io::vals::Gpio0ctrlFuncsel::NULL.0)); } } } /// Random number generator based on the ROSC RANDOMBIT register. /// /// This will not produce random values if the ROSC is stopped or run at some /// harmonic of the bus frequency. With default clock settings these are not /// issues. pub struct RoscRng; impl RoscRng { fn next_u8() -> u8 { let random_reg = pac::ROSC.randombit(); let mut acc = 0; for _ in 0..u8::BITS { acc <<= 1; acc |= unsafe { random_reg.read().randombit() as u8 }; } acc } } impl rand_core::RngCore for RoscRng { fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { Ok(self.fill_bytes(dest)) } fn next_u32(&mut self) -> u32 { rand_core::impls::next_u32_via_fill(self) } fn next_u64(&mut self) -> u64 { rand_core::impls::next_u64_via_fill(self) } fn fill_bytes(&mut self, dest: &mut [u8]) { dest.fill_with(Self::next_u8) } }