//! Universal Serial Bus (USB) driver. #![macro_use] use core::future::poll_fn; use core::marker::PhantomData; use core::mem::MaybeUninit; use core::sync::atomic::{compiler_fence, AtomicBool, AtomicU32, Ordering}; use core::task::Poll; use cortex_m::peripheral::NVIC; use embassy_hal_common::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use embassy_usb_driver as driver; use embassy_usb_driver::{Direction, EndpointAddress, EndpointError, EndpointInfo, EndpointType, Event, Unsupported}; use pac::usbd::RegisterBlock; use crate::interrupt::{Interrupt, InterruptExt}; use crate::util::slice_in_ram; use crate::{pac, Peripheral}; const NEW_AW: AtomicWaker = AtomicWaker::new(); static BUS_WAKER: AtomicWaker = NEW_AW; static EP0_WAKER: AtomicWaker = NEW_AW; static EP_IN_WAKERS: [AtomicWaker; 8] = [NEW_AW; 8]; static EP_OUT_WAKERS: [AtomicWaker; 8] = [NEW_AW; 8]; static READY_ENDPOINTS: AtomicU32 = AtomicU32::new(0); /// Trait for detecting USB VBUS power. /// /// There are multiple ways to detect USB power. The behavior /// here provides a hook into determining whether it is. pub trait VbusDetect { /// Report whether power is detected. /// /// This is indicated by the `USBREGSTATUS.VBUSDETECT` register, or the /// `USBDETECTED`, `USBREMOVED` events from the `POWER` peripheral. fn is_usb_detected(&self) -> bool; /// Wait until USB power is ready. /// /// USB power ready is indicated by the `USBREGSTATUS.OUTPUTRDY` register, or the /// `USBPWRRDY` event from the `POWER` peripheral. async fn wait_power_ready(&mut self) -> Result<(), ()>; } /// [`VbusDetect`] implementation using the native hardware POWER peripheral. /// /// Unsuitable for usage with the nRF softdevice, since it reserves exclusive acces /// to POWER. In that case, use [`VbusDetectSignal`]. #[cfg(not(feature = "_nrf5340-app"))] pub struct HardwareVbusDetect { _private: (), } static POWER_WAKER: AtomicWaker = NEW_AW; #[cfg(not(feature = "_nrf5340-app"))] impl HardwareVbusDetect { /// Create a new `VbusDetectNative`. pub fn new(power_irq: impl Interrupt) -> Self { let regs = unsafe { &*pac::POWER::ptr() }; power_irq.set_handler(Self::on_interrupt); power_irq.unpend(); power_irq.enable(); regs.intenset .write(|w| w.usbdetected().set().usbremoved().set().usbpwrrdy().set()); Self { _private: () } } #[cfg(not(feature = "_nrf5340-app"))] fn on_interrupt(_: *mut ()) { let regs = unsafe { &*pac::POWER::ptr() }; if regs.events_usbdetected.read().bits() != 0 { regs.events_usbdetected.reset(); BUS_WAKER.wake(); } if regs.events_usbremoved.read().bits() != 0 { regs.events_usbremoved.reset(); BUS_WAKER.wake(); POWER_WAKER.wake(); } if regs.events_usbpwrrdy.read().bits() != 0 { regs.events_usbpwrrdy.reset(); POWER_WAKER.wake(); } } } #[cfg(not(feature = "_nrf5340-app"))] impl VbusDetect for HardwareVbusDetect { fn is_usb_detected(&self) -> bool { let regs = unsafe { &*pac::POWER::ptr() }; regs.usbregstatus.read().vbusdetect().is_vbus_present() } async fn wait_power_ready(&mut self) -> Result<(), ()> { poll_fn(move |cx| { POWER_WAKER.register(cx.waker()); let regs = unsafe { &*pac::POWER::ptr() }; if regs.usbregstatus.read().outputrdy().is_ready() { Poll::Ready(Ok(())) } else if !self.is_usb_detected() { Poll::Ready(Err(())) } else { Poll::Pending } }) .await } } /// Software-backed [`VbusDetect`] implementation. /// /// This implementation does not interact with the hardware, it allows user code /// to notify the power events by calling functions instead. /// /// This is suitable for use with the nRF softdevice, by calling the functions /// when the softdevice reports power-related events. pub struct SoftwareVbusDetect { usb_detected: AtomicBool, power_ready: AtomicBool, } impl SoftwareVbusDetect { /// Create a new `SoftwareVbusDetect`. pub fn new(usb_detected: bool, power_ready: bool) -> Self { BUS_WAKER.wake(); Self { usb_detected: AtomicBool::new(usb_detected), power_ready: AtomicBool::new(power_ready), } } /// Report whether power was detected. /// /// Equivalent to the `USBDETECTED`, `USBREMOVED` events from the `POWER` peripheral. pub fn detected(&self, detected: bool) { self.usb_detected.store(detected, Ordering::Relaxed); self.power_ready.store(false, Ordering::Relaxed); BUS_WAKER.wake(); POWER_WAKER.wake(); } /// Report when USB power is ready. /// /// Equivalent to the `USBPWRRDY` event from the `POWER` peripheral. pub fn ready(&self) { self.power_ready.store(true, Ordering::Relaxed); POWER_WAKER.wake(); } } impl VbusDetect for &SoftwareVbusDetect { fn is_usb_detected(&self) -> bool { self.usb_detected.load(Ordering::Relaxed) } async fn wait_power_ready(&mut self) -> Result<(), ()> { poll_fn(move |cx| { POWER_WAKER.register(cx.waker()); if self.power_ready.load(Ordering::Relaxed) { Poll::Ready(Ok(())) } else if !self.usb_detected.load(Ordering::Relaxed) { Poll::Ready(Err(())) } else { Poll::Pending } }) .await } } /// USB driver. pub struct Driver<'d, T: Instance, P: VbusDetect> { _p: PeripheralRef<'d, T>, alloc_in: Allocator, alloc_out: Allocator, usb_supply: P, } impl<'d, T: Instance, P: VbusDetect> Driver<'d, T, P> { /// Create a new USB driver. pub fn new(usb: impl Peripheral

+ 'd, irq: impl Peripheral

+ 'd, usb_supply: P) -> Self { into_ref!(usb, irq); irq.set_handler(Self::on_interrupt); irq.unpend(); irq.enable(); Self { _p: usb, alloc_in: Allocator::new(), alloc_out: Allocator::new(), usb_supply, } } fn on_interrupt(_: *mut ()) { let regs = T::regs(); if regs.events_usbreset.read().bits() != 0 { regs.intenclr.write(|w| w.usbreset().clear()); BUS_WAKER.wake(); EP0_WAKER.wake(); } if regs.events_ep0setup.read().bits() != 0 { regs.intenclr.write(|w| w.ep0setup().clear()); EP0_WAKER.wake(); } if regs.events_ep0datadone.read().bits() != 0 { regs.intenclr.write(|w| w.ep0datadone().clear()); EP0_WAKER.wake(); } // USBEVENT and EPDATA events are weird. They're the "aggregate" // of individual bits in EVENTCAUSE and EPDATASTATUS. We handle them // differently than events normally. // // They seem to be edge-triggered, not level-triggered: when an // individual bit goes 0->1, the event fires *just once*. // Therefore, it's fine to clear just the event, and let main thread // check the individual bits in EVENTCAUSE and EPDATASTATUS. It // doesn't cause an infinite irq loop. if regs.events_usbevent.read().bits() != 0 { regs.events_usbevent.reset(); BUS_WAKER.wake(); } if regs.events_epdata.read().bits() != 0 { regs.events_epdata.reset(); let r = regs.epdatastatus.read().bits(); regs.epdatastatus.write(|w| unsafe { w.bits(r) }); READY_ENDPOINTS.fetch_or(r, Ordering::AcqRel); for i in 1..=7 { if r & In::mask(i) != 0 { In::waker(i).wake(); } if r & Out::mask(i) != 0 { Out::waker(i).wake(); } } } } } impl<'d, T: Instance, P: VbusDetect + 'd> driver::Driver<'d> for Driver<'d, T, P> { type EndpointOut = Endpoint<'d, T, Out>; type EndpointIn = Endpoint<'d, T, In>; type ControlPipe = ControlPipe<'d, T>; type Bus = Bus<'d, T, P>; fn alloc_endpoint_in( &mut self, ep_type: EndpointType, packet_size: u16, interval_ms: u8, ) -> Result { let index = self.alloc_in.allocate(ep_type)?; let ep_addr = EndpointAddress::from_parts(index, Direction::In); Ok(Endpoint::new(EndpointInfo { addr: ep_addr, ep_type, max_packet_size: packet_size, interval_ms, })) } fn alloc_endpoint_out( &mut self, ep_type: EndpointType, packet_size: u16, interval_ms: u8, ) -> Result { let index = self.alloc_out.allocate(ep_type)?; let ep_addr = EndpointAddress::from_parts(index, Direction::Out); Ok(Endpoint::new(EndpointInfo { addr: ep_addr, ep_type, max_packet_size: packet_size, interval_ms, })) } fn start(mut self, control_max_packet_size: u16) -> (Self::Bus, Self::ControlPipe) { ( Bus { _p: unsafe { self._p.clone_unchecked() }, power_available: false, usb_supply: self.usb_supply, }, ControlPipe { _p: self._p, max_packet_size: control_max_packet_size, }, ) } } /// USB bus. pub struct Bus<'d, T: Instance, P: VbusDetect> { _p: PeripheralRef<'d, T>, power_available: bool, usb_supply: P, } impl<'d, T: Instance, P: VbusDetect> driver::Bus for Bus<'d, T, P> { async fn enable(&mut self) { let regs = T::regs(); errata::pre_enable(); regs.enable.write(|w| w.enable().enabled()); // Wait until the peripheral is ready. regs.intenset.write(|w| w.usbevent().set_bit()); poll_fn(|cx| { BUS_WAKER.register(cx.waker()); if regs.eventcause.read().ready().is_ready() { Poll::Ready(()) } else { Poll::Pending } }) .await; regs.eventcause.write(|w| w.ready().clear_bit_by_one()); errata::post_enable(); unsafe { NVIC::unmask(pac::Interrupt::USBD) }; regs.intenset.write(|w| { w.usbreset().set_bit(); w.usbevent().set_bit(); w.epdata().set_bit(); w }); if self.usb_supply.wait_power_ready().await.is_ok() { // Enable the USB pullup, allowing enumeration. regs.usbpullup.write(|w| w.connect().enabled()); trace!("enabled"); } else { trace!("usb power not ready due to usb removal"); } } async fn disable(&mut self) { let regs = T::regs(); regs.enable.write(|x| x.enable().disabled()); } async fn poll(&mut self) -> Event { poll_fn(move |cx| { BUS_WAKER.register(cx.waker()); let regs = T::regs(); if regs.events_usbreset.read().bits() != 0 { regs.events_usbreset.reset(); regs.intenset.write(|w| w.usbreset().set()); // Disable all endpoints except EP0 regs.epinen.write(|w| unsafe { w.bits(0x01) }); regs.epouten.write(|w| unsafe { w.bits(0x01) }); READY_ENDPOINTS.store(In::mask(0), Ordering::Release); for i in 1..=7 { In::waker(i).wake(); Out::waker(i).wake(); } return Poll::Ready(Event::Reset); } let r = regs.eventcause.read(); if r.isooutcrc().bit() { regs.eventcause.write(|w| w.isooutcrc().detected()); trace!("USB event: isooutcrc"); } if r.usbwuallowed().bit() { regs.eventcause.write(|w| w.usbwuallowed().allowed()); trace!("USB event: usbwuallowed"); } if r.suspend().bit() { regs.eventcause.write(|w| w.suspend().detected()); regs.lowpower.write(|w| w.lowpower().low_power()); return Poll::Ready(Event::Suspend); } if r.resume().bit() { regs.eventcause.write(|w| w.resume().detected()); return Poll::Ready(Event::Resume); } if r.ready().bit() { regs.eventcause.write(|w| w.ready().ready()); trace!("USB event: ready"); } if self.usb_supply.is_usb_detected() != self.power_available { self.power_available = !self.power_available; if self.power_available { trace!("Power event: available"); return Poll::Ready(Event::PowerDetected); } else { trace!("Power event: removed"); return Poll::Ready(Event::PowerRemoved); } } Poll::Pending }) .await } fn endpoint_set_stalled(&mut self, ep_addr: EndpointAddress, stalled: bool) { let regs = T::regs(); unsafe { if ep_addr.index() == 0 { regs.tasks_ep0stall.write(|w| w.tasks_ep0stall().bit(stalled)); } else { regs.epstall.write(|w| { w.ep().bits(ep_addr.index() as u8 & 0b111); w.io().bit(ep_addr.is_in()); w.stall().bit(stalled) }); } } } fn endpoint_is_stalled(&mut self, ep_addr: EndpointAddress) -> bool { let regs = T::regs(); let i = ep_addr.index(); match ep_addr.direction() { Direction::Out => regs.halted.epout[i].read().getstatus().is_halted(), Direction::In => regs.halted.epin[i].read().getstatus().is_halted(), } } fn endpoint_set_enabled(&mut self, ep_addr: EndpointAddress, enabled: bool) { let regs = T::regs(); let i = ep_addr.index(); let mask = 1 << i; debug!("endpoint_set_enabled {:?} {}", ep_addr, enabled); match ep_addr.direction() { Direction::In => { let mut was_enabled = false; regs.epinen.modify(|r, w| { let mut bits = r.bits(); was_enabled = (bits & mask) != 0; if enabled { bits |= mask } else { bits &= !mask } unsafe { w.bits(bits) } }); let ready_mask = In::mask(i); if enabled { if !was_enabled { READY_ENDPOINTS.fetch_or(ready_mask, Ordering::AcqRel); } } else { READY_ENDPOINTS.fetch_and(!ready_mask, Ordering::AcqRel); } In::waker(i).wake(); } Direction::Out => { regs.epouten.modify(|r, w| { let mut bits = r.bits(); if enabled { bits |= mask } else { bits &= !mask } unsafe { w.bits(bits) } }); let ready_mask = Out::mask(i); if enabled { // when first enabled, bulk/interrupt OUT endpoints will *not* receive data (the // peripheral will NAK all incoming packets) until we write a zero to the SIZE // register (see figure 203 of the 52840 manual). To avoid that we write a 0 to the // SIZE register regs.size.epout[i].reset(); } else { READY_ENDPOINTS.fetch_and(!ready_mask, Ordering::AcqRel); } Out::waker(i).wake(); } } } #[inline] async fn remote_wakeup(&mut self) -> Result<(), Unsupported> { let regs = T::regs(); if regs.lowpower.read().lowpower().is_low_power() { errata::pre_wakeup(); regs.lowpower.write(|w| w.lowpower().force_normal()); poll_fn(|cx| { BUS_WAKER.register(cx.waker()); let regs = T::regs(); let r = regs.eventcause.read(); if regs.events_usbreset.read().bits() != 0 { Poll::Ready(()) } else if r.resume().bit() { Poll::Ready(()) } else if r.usbwuallowed().bit() { regs.eventcause.write(|w| w.usbwuallowed().allowed()); regs.dpdmvalue.write(|w| w.state().resume()); regs.tasks_dpdmdrive.write(|w| w.tasks_dpdmdrive().set_bit()); Poll::Ready(()) } else { Poll::Pending } }) .await; errata::post_wakeup(); } Ok(()) } } /// Type-level marker for OUT endpoints. pub enum Out {} /// Type-level marker for IN endpoints. pub enum In {} trait EndpointDir { fn waker(i: usize) -> &'static AtomicWaker; fn mask(i: usize) -> u32; fn is_enabled(regs: &RegisterBlock, i: usize) -> bool; } impl EndpointDir for In { #[inline] fn waker(i: usize) -> &'static AtomicWaker { &EP_IN_WAKERS[i - 1] } #[inline] fn mask(i: usize) -> u32 { 1 << i } #[inline] fn is_enabled(regs: &RegisterBlock, i: usize) -> bool { (regs.epinen.read().bits() & (1 << i)) != 0 } } impl EndpointDir for Out { #[inline] fn waker(i: usize) -> &'static AtomicWaker { &EP_OUT_WAKERS[i - 1] } #[inline] fn mask(i: usize) -> u32 { 1 << (i + 16) } #[inline] fn is_enabled(regs: &RegisterBlock, i: usize) -> bool { (regs.epouten.read().bits() & (1 << i)) != 0 } } /// USB endpoint. pub struct Endpoint<'d, T: Instance, Dir> { _phantom: PhantomData<(&'d mut T, Dir)>, info: EndpointInfo, } impl<'d, T: Instance, Dir> Endpoint<'d, T, Dir> { fn new(info: EndpointInfo) -> Self { Self { info, _phantom: PhantomData, } } } impl<'d, T: Instance, Dir: EndpointDir> driver::Endpoint for Endpoint<'d, T, Dir> { fn info(&self) -> &EndpointInfo { &self.info } async fn wait_enabled(&mut self) { let i = self.info.addr.index(); assert!(i != 0); poll_fn(move |cx| { Dir::waker(i).register(cx.waker()); if Dir::is_enabled(T::regs(), i) { Poll::Ready(()) } else { Poll::Pending } }) .await } } impl<'d, T: Instance, Dir> Endpoint<'d, T, Dir> { async fn wait_data_ready(&mut self) -> Result<(), ()> where Dir: EndpointDir, { let i = self.info.addr.index(); assert!(i != 0); poll_fn(|cx| { Dir::waker(i).register(cx.waker()); let r = READY_ENDPOINTS.load(Ordering::Acquire); if !Dir::is_enabled(T::regs(), i) { Poll::Ready(Err(())) } else if r & Dir::mask(i) != 0 { Poll::Ready(Ok(())) } else { Poll::Pending } }) .await?; // Mark as not ready READY_ENDPOINTS.fetch_and(!Dir::mask(i), Ordering::AcqRel); Ok(()) } } unsafe fn read_dma(i: usize, buf: &mut [u8]) -> Result { let regs = T::regs(); // Check that the packet fits into the buffer let size = regs.size.epout[i].read().bits() as usize; if size > buf.len() { return Err(EndpointError::BufferOverflow); } let epout = [ ®s.epout0, ®s.epout1, ®s.epout2, ®s.epout3, ®s.epout4, ®s.epout5, ®s.epout6, ®s.epout7, ]; epout[i].ptr.write(|w| w.bits(buf.as_ptr() as u32)); // MAXCNT must match SIZE epout[i].maxcnt.write(|w| w.bits(size as u32)); dma_start(); regs.events_endepout[i].reset(); regs.tasks_startepout[i].write(|w| w.tasks_startepout().set_bit()); while regs.events_endepout[i].read().events_endepout().bit_is_clear() {} regs.events_endepout[i].reset(); dma_end(); regs.size.epout[i].reset(); Ok(size) } unsafe fn write_dma(i: usize, buf: &[u8]) { let regs = T::regs(); assert!(buf.len() <= 64); let mut ram_buf: MaybeUninit<[u8; 64]> = MaybeUninit::uninit(); let ptr = if !slice_in_ram(buf) { // EasyDMA can't read FLASH, so we copy through RAM let ptr = ram_buf.as_mut_ptr() as *mut u8; core::ptr::copy_nonoverlapping(buf.as_ptr(), ptr, buf.len()); ptr } else { buf.as_ptr() }; let epin = [ ®s.epin0, ®s.epin1, ®s.epin2, ®s.epin3, ®s.epin4, ®s.epin5, ®s.epin6, ®s.epin7, ]; // Set the buffer length so the right number of bytes are transmitted. // Safety: `buf.len()` has been checked to be <= the max buffer length. epin[i].ptr.write(|w| w.bits(ptr as u32)); epin[i].maxcnt.write(|w| w.maxcnt().bits(buf.len() as u8)); regs.events_endepin[i].reset(); dma_start(); regs.tasks_startepin[i].write(|w| w.bits(1)); while regs.events_endepin[i].read().bits() == 0 {} dma_end(); } impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> { async fn read(&mut self, buf: &mut [u8]) -> Result { let i = self.info.addr.index(); assert!(i != 0); self.wait_data_ready().await.map_err(|_| EndpointError::Disabled)?; unsafe { read_dma::(i, buf) } } } impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> { async fn write(&mut self, buf: &[u8]) -> Result<(), EndpointError> { let i = self.info.addr.index(); assert!(i != 0); self.wait_data_ready().await.map_err(|_| EndpointError::Disabled)?; unsafe { write_dma::(i, buf) } Ok(()) } } /// USB control pipe. pub struct ControlPipe<'d, T: Instance> { _p: PeripheralRef<'d, T>, max_packet_size: u16, } impl<'d, T: Instance> driver::ControlPipe for ControlPipe<'d, T> { fn max_packet_size(&self) -> usize { usize::from(self.max_packet_size) } async fn setup(&mut self) -> [u8; 8] { let regs = T::regs(); // Reset shorts regs.shorts.write(|w| w); // Wait for SETUP packet regs.intenset.write(|w| w.ep0setup().set()); poll_fn(|cx| { EP0_WAKER.register(cx.waker()); let regs = T::regs(); if regs.events_ep0setup.read().bits() != 0 { Poll::Ready(()) } else { Poll::Pending } }) .await; regs.events_ep0setup.reset(); let mut buf = [0; 8]; buf[0] = regs.bmrequesttype.read().bits() as u8; buf[1] = regs.brequest.read().brequest().bits(); buf[2] = regs.wvaluel.read().wvaluel().bits(); buf[3] = regs.wvalueh.read().wvalueh().bits(); buf[4] = regs.windexl.read().windexl().bits(); buf[5] = regs.windexh.read().windexh().bits(); buf[6] = regs.wlengthl.read().wlengthl().bits(); buf[7] = regs.wlengthh.read().wlengthh().bits(); buf } async fn data_out(&mut self, buf: &mut [u8], _first: bool, _last: bool) -> Result { let regs = T::regs(); regs.events_ep0datadone.reset(); // This starts a RX on EP0. events_ep0datadone notifies when done. regs.tasks_ep0rcvout.write(|w| w.tasks_ep0rcvout().set_bit()); // Wait until ready regs.intenset.write(|w| { w.usbreset().set(); w.ep0setup().set(); w.ep0datadone().set() }); poll_fn(|cx| { EP0_WAKER.register(cx.waker()); let regs = T::regs(); if regs.events_ep0datadone.read().bits() != 0 { Poll::Ready(Ok(())) } else if regs.events_usbreset.read().bits() != 0 { trace!("aborted control data_out: usb reset"); Poll::Ready(Err(EndpointError::Disabled)) } else if regs.events_ep0setup.read().bits() != 0 { trace!("aborted control data_out: received another SETUP"); Poll::Ready(Err(EndpointError::Disabled)) } else { Poll::Pending } }) .await?; unsafe { read_dma::(0, buf) } } async fn data_in(&mut self, buf: &[u8], _first: bool, last: bool) -> Result<(), EndpointError> { let regs = T::regs(); regs.events_ep0datadone.reset(); regs.shorts.write(|w| w.ep0datadone_ep0status().bit(last)); // This starts a TX on EP0. events_ep0datadone notifies when done. unsafe { write_dma::(0, buf) } regs.intenset.write(|w| { w.usbreset().set(); w.ep0setup().set(); w.ep0datadone().set() }); poll_fn(|cx| { cx.waker().wake_by_ref(); EP0_WAKER.register(cx.waker()); let regs = T::regs(); if regs.events_ep0datadone.read().bits() != 0 { Poll::Ready(Ok(())) } else if regs.events_usbreset.read().bits() != 0 { trace!("aborted control data_in: usb reset"); Poll::Ready(Err(EndpointError::Disabled)) } else if regs.events_ep0setup.read().bits() != 0 { trace!("aborted control data_in: received another SETUP"); Poll::Ready(Err(EndpointError::Disabled)) } else { Poll::Pending } }) .await } async fn accept(&mut self) { let regs = T::regs(); regs.tasks_ep0status.write(|w| w.tasks_ep0status().bit(true)); } async fn reject(&mut self) { let regs = T::regs(); regs.tasks_ep0stall.write(|w| w.tasks_ep0stall().bit(true)); } async fn accept_set_address(&mut self, _addr: u8) { self.accept().await; // Nothing to do, the peripheral handles this. } } fn dma_start() { compiler_fence(Ordering::Release); } fn dma_end() { compiler_fence(Ordering::Acquire); } struct Allocator { used: u16, } impl Allocator { fn new() -> Self { Self { used: 0 } } fn allocate(&mut self, ep_type: EndpointType) -> Result { // Endpoint addresses are fixed in hardware: // - 0x80 / 0x00 - Control EP0 // - 0x81 / 0x01 - Bulk/Interrupt EP1 // - 0x82 / 0x02 - Bulk/Interrupt EP2 // - 0x83 / 0x03 - Bulk/Interrupt EP3 // - 0x84 / 0x04 - Bulk/Interrupt EP4 // - 0x85 / 0x05 - Bulk/Interrupt EP5 // - 0x86 / 0x06 - Bulk/Interrupt EP6 // - 0x87 / 0x07 - Bulk/Interrupt EP7 // - 0x88 / 0x08 - Isochronous // Endpoint directions are allocated individually. let alloc_index = match ep_type { EndpointType::Isochronous => 8, EndpointType::Control => return Err(driver::EndpointAllocError), EndpointType::Interrupt | EndpointType::Bulk => { // Find rightmost zero bit in 1..=7 let ones = (self.used >> 1).trailing_ones() as usize; if ones >= 7 { return Err(driver::EndpointAllocError); } ones + 1 } }; if self.used & (1 << alloc_index) != 0 { return Err(driver::EndpointAllocError); } self.used |= 1 << alloc_index; Ok(alloc_index) } } pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> &'static pac::usbd::RegisterBlock; } } /// USB peripheral instance. pub trait Instance: Peripheral

+ sealed::Instance + 'static + Send { /// Interrupt for this peripheral. type Interrupt: Interrupt; } macro_rules! impl_usb { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::usb::sealed::Instance for peripherals::$type { fn regs() -> &'static pac::usbd::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } } impl crate::usb::Instance for peripherals::$type { type Interrupt = crate::interrupt::$irq; } }; } mod errata { /// Writes `val` to `addr`. Used to apply Errata workarounds. #[cfg(any(feature = "nrf52840", feature = "nrf52833", feature = "nrf52820"))] unsafe fn poke(addr: u32, val: u32) { (addr as *mut u32).write_volatile(val); } /// Reads 32 bits from `addr`. #[cfg(feature = "nrf52840")] unsafe fn peek(addr: u32) -> u32 { (addr as *mut u32).read_volatile() } pub fn pre_enable() { // Works around Erratum 187 on chip revisions 1 and 2. #[cfg(any(feature = "nrf52840", feature = "nrf52833", feature = "nrf52820"))] unsafe { poke(0x4006EC00, 0x00009375); poke(0x4006ED14, 0x00000003); poke(0x4006EC00, 0x00009375); } pre_wakeup(); } pub fn post_enable() { post_wakeup(); // Works around Erratum 187 on chip revisions 1 and 2. #[cfg(any(feature = "nrf52840", feature = "nrf52833", feature = "nrf52820"))] unsafe { poke(0x4006EC00, 0x00009375); poke(0x4006ED14, 0x00000000); poke(0x4006EC00, 0x00009375); } } pub fn pre_wakeup() { // Works around Erratum 171 on chip revisions 1 and 2. #[cfg(feature = "nrf52840")] unsafe { if peek(0x4006EC00) == 0x00000000 { poke(0x4006EC00, 0x00009375); } poke(0x4006EC14, 0x000000C0); poke(0x4006EC00, 0x00009375); } } pub fn post_wakeup() { // Works around Erratum 171 on chip revisions 1 and 2. #[cfg(feature = "nrf52840")] unsafe { if peek(0x4006EC00) == 0x00000000 { poke(0x4006EC00, 0x00009375); } poke(0x4006EC14, 0x00000000); poke(0x4006EC00, 0x00009375); } } }