#![macro_use] use core::marker::PhantomData; use embassy_hal_common::{into_ref, PeripheralRef}; use crate::dma::NoDma; use crate::gpio::sealed::AFType; #[cfg(any(lpuart_v1, lpuart_v2))] use crate::pac::lpuart::{regs, vals, Lpuart as Regs}; #[cfg(not(any(lpuart_v1, lpuart_v2)))] use crate::pac::usart::{regs, vals, Usart as Regs}; use crate::{peripherals, Peripheral}; #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub enum DataBits { DataBits8, DataBits9, } #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub enum Parity { ParityNone, ParityEven, ParityOdd, } #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub enum StopBits { #[doc = "1 stop bit"] STOP1, #[doc = "0.5 stop bits"] STOP0P5, #[doc = "2 stop bits"] STOP2, #[doc = "1.5 stop bits"] STOP1P5, } #[non_exhaustive] #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub struct Config { pub baudrate: u32, pub data_bits: DataBits, pub stop_bits: StopBits, pub parity: Parity, } impl Default for Config { fn default() -> Self { Self { baudrate: 115200, data_bits: DataBits::DataBits8, stop_bits: StopBits::STOP1, parity: Parity::ParityNone, } } } /// Serial error #[derive(Debug, Eq, PartialEq, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// Framing error Framing, /// Noise error Noise, /// RX buffer overrun Overrun, /// Parity check error Parity, } pub struct Uart<'d, T: BasicInstance, TxDma = NoDma, RxDma = NoDma> { phantom: PhantomData<&'d mut T>, tx: UartTx<'d, T, TxDma>, rx: UartRx<'d, T, RxDma>, } pub struct UartTx<'d, T: BasicInstance, TxDma = NoDma> { phantom: PhantomData<&'d mut T>, tx_dma: PeripheralRef<'d, TxDma>, } pub struct UartRx<'d, T: BasicInstance, RxDma = NoDma> { phantom: PhantomData<&'d mut T>, rx_dma: PeripheralRef<'d, RxDma>, } impl<'d, T: BasicInstance, TxDma> UartTx<'d, T, TxDma> { fn new(tx_dma: PeripheralRef<'d, TxDma>) -> Self { Self { tx_dma, phantom: PhantomData, } } pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> where TxDma: crate::usart::TxDma, { let ch = &mut self.tx_dma; let request = ch.request(); unsafe { T::regs().cr3().modify(|reg| { reg.set_dmat(true); }); } // If we don't assign future to a variable, the data register pointer // is held across an await and makes the future non-Send. let transfer = crate::dma::write(ch, request, buffer, tdr(T::regs())); transfer.await; Ok(()) } pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { unsafe { let r = T::regs(); for &b in buffer { while !sr(r).read().txe() {} tdr(r).write_volatile(b); } } Ok(()) } pub fn blocking_flush(&mut self) -> Result<(), Error> { unsafe { let r = T::regs(); while !sr(r).read().tc() {} } Ok(()) } } impl<'d, T: BasicInstance, RxDma> UartRx<'d, T, RxDma> { fn new(rx_dma: PeripheralRef<'d, RxDma>) -> Self { Self { rx_dma, phantom: PhantomData, } } pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> where RxDma: crate::usart::RxDma, { let ch = &mut self.rx_dma; let request = ch.request(); unsafe { T::regs().cr3().modify(|reg| { reg.set_dmar(true); }); } // If we don't assign future to a variable, the data register pointer // is held across an await and makes the future non-Send. let transfer = crate::dma::read(ch, request, rdr(T::regs()), buffer); transfer.await; Ok(()) } pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { unsafe { let r = T::regs(); for b in buffer { loop { let sr = sr(r).read(); if sr.pe() { rdr(r).read_volatile(); return Err(Error::Parity); } else if sr.fe() { rdr(r).read_volatile(); return Err(Error::Framing); } else if sr.ne() { rdr(r).read_volatile(); return Err(Error::Noise); } else if sr.ore() { rdr(r).read_volatile(); return Err(Error::Overrun); } else if sr.rxne() { break; } } *b = rdr(r).read_volatile(); } } Ok(()) } } impl<'d, T: BasicInstance, TxDma, RxDma> Uart<'d, T, TxDma, RxDma> { pub fn new( _inner: impl Peripheral

+ 'd, rx: impl Peripheral

> + 'd, tx: impl Peripheral

> + 'd, tx_dma: impl Peripheral

+ 'd, rx_dma: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(_inner, rx, tx, tx_dma, rx_dma); T::enable(); T::reset(); let pclk_freq = T::frequency(); // TODO: better calculation, including error checking and OVER8 if possible. let div = (pclk_freq.0 + (config.baudrate / 2)) / config.baudrate * T::MULTIPLIER; let r = T::regs(); unsafe { rx.set_as_af(rx.af_num(), AFType::Input); tx.set_as_af(tx.af_num(), AFType::OutputPushPull); r.cr2().write(|_w| {}); r.cr3().write(|_w| {}); r.brr().write_value(regs::Brr(div)); r.cr1().write(|w| { w.set_ue(true); w.set_te(true); w.set_re(true); w.set_m0(if config.parity != Parity::ParityNone { vals::M0::BIT9 } else { vals::M0::BIT8 }); w.set_pce(config.parity != Parity::ParityNone); w.set_ps(match config.parity { Parity::ParityOdd => vals::Ps::ODD, Parity::ParityEven => vals::Ps::EVEN, _ => vals::Ps::EVEN, }); }); } Self { tx: UartTx::new(tx_dma), rx: UartRx::new(rx_dma), phantom: PhantomData {}, } } pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> where TxDma: crate::usart::TxDma, { self.tx.write(buffer).await } pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { self.tx.blocking_write(buffer) } pub fn blocking_flush(&mut self) -> Result<(), Error> { self.tx.blocking_flush() } pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> where RxDma: crate::usart::RxDma, { self.rx.read(buffer).await } pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { self.rx.blocking_read(buffer) } /// Split the Uart into a transmitter and receiver, which is /// particuarly useful when having two tasks correlating to /// transmitting and receiving. pub fn split(self) -> (UartTx<'d, T, TxDma>, UartRx<'d, T, RxDma>) { (self.tx, self.rx) } } mod eh02 { use super::*; impl<'d, T: BasicInstance, RxDma> embedded_hal_02::serial::Read for UartRx<'d, T, RxDma> { type Error = Error; fn read(&mut self) -> Result> { let r = T::regs(); unsafe { let sr = sr(r).read(); if sr.pe() { rdr(r).read_volatile(); Err(nb::Error::Other(Error::Parity)) } else if sr.fe() { rdr(r).read_volatile(); Err(nb::Error::Other(Error::Framing)) } else if sr.ne() { rdr(r).read_volatile(); Err(nb::Error::Other(Error::Noise)) } else if sr.ore() { rdr(r).read_volatile(); Err(nb::Error::Other(Error::Overrun)) } else if sr.rxne() { Ok(rdr(r).read_volatile()) } else { Err(nb::Error::WouldBlock) } } } } impl<'d, T: BasicInstance, TxDma> embedded_hal_02::blocking::serial::Write for UartTx<'d, T, TxDma> { type Error = Error; fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { self.blocking_write(buffer) } fn bflush(&mut self) -> Result<(), Self::Error> { self.blocking_flush() } } impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::serial::Read for Uart<'d, T, TxDma, RxDma> { type Error = Error; fn read(&mut self) -> Result> { embedded_hal_02::serial::Read::read(&mut self.rx) } } impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_02::blocking::serial::Write for Uart<'d, T, TxDma, RxDma> { type Error = Error; fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { self.blocking_write(buffer) } fn bflush(&mut self) -> Result<(), Self::Error> { self.blocking_flush() } } } #[cfg(feature = "unstable-traits")] mod eh1 { use super::*; impl embedded_hal_1::serial::Error for Error { fn kind(&self) -> embedded_hal_1::serial::ErrorKind { match *self { Self::Framing => embedded_hal_1::serial::ErrorKind::FrameFormat, Self::Noise => embedded_hal_1::serial::ErrorKind::Noise, Self::Overrun => embedded_hal_1::serial::ErrorKind::Overrun, Self::Parity => embedded_hal_1::serial::ErrorKind::Parity, } } } impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_1::serial::ErrorType for Uart<'d, T, TxDma, RxDma> { type Error = Error; } impl<'d, T: BasicInstance, TxDma> embedded_hal_1::serial::ErrorType for UartTx<'d, T, TxDma> { type Error = Error; } impl<'d, T: BasicInstance, RxDma> embedded_hal_1::serial::ErrorType for UartRx<'d, T, RxDma> { type Error = Error; } } cfg_if::cfg_if! { if #[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "_todo_embedded_hal_serial"))] { use core::future::Future; impl<'d, T: BasicInstance, TxDma> embedded_hal_async::serial::Write for UartTx<'d, T, TxDma> where TxDma: crate::usart::TxDma, { type WriteFuture<'a> = impl Future> + 'a where Self: 'a; fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { self.write(buf) } type FlushFuture<'a> = impl Future> + 'a where Self: 'a; fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { async move { Ok(()) } } } impl<'d, T: BasicInstance, RxDma> embedded_hal_async::serial::Read for UartRx<'d, T, RxDma> where RxDma: crate::usart::RxDma, { type ReadFuture<'a> = impl Future> + 'a where Self: 'a; fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { self.read(buf) } } impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_async::serial::Write for Uart<'d, T, TxDma, RxDma> where TxDma: crate::usart::TxDma, { type WriteFuture<'a> = impl Future> + 'a where Self: 'a; fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> { self.write(buf) } type FlushFuture<'a> = impl Future> + 'a where Self: 'a; fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { async move { Ok(()) } } } impl<'d, T: BasicInstance, TxDma, RxDma> embedded_hal_async::serial::Read for Uart<'d, T, TxDma, RxDma> where RxDma: crate::usart::RxDma, { type ReadFuture<'a> = impl Future> + 'a where Self: 'a; fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> { self.read(buf) } } } } #[cfg(feature = "nightly")] pub use buffered::*; #[cfg(feature = "nightly")] mod buffered; #[cfg(usart_v1)] fn tdr(r: crate::pac::usart::Usart) -> *mut u8 { r.dr().ptr() as _ } #[cfg(usart_v1)] fn rdr(r: crate::pac::usart::Usart) -> *mut u8 { r.dr().ptr() as _ } #[cfg(usart_v1)] fn sr(r: crate::pac::usart::Usart) -> crate::pac::common::Reg { r.sr() } #[cfg(usart_v1)] #[allow(unused)] unsafe fn clear_interrupt_flags(_r: Regs, _sr: regs::Sr) { // On v1 the flags are cleared implicitly by reads and writes to DR. } #[cfg(usart_v2)] fn tdr(r: Regs) -> *mut u8 { r.tdr().ptr() as _ } #[cfg(usart_v2)] fn rdr(r: Regs) -> *mut u8 { r.rdr().ptr() as _ } #[cfg(usart_v2)] fn sr(r: Regs) -> crate::pac::common::Reg { r.isr() } #[cfg(usart_v2)] #[allow(unused)] unsafe fn clear_interrupt_flags(r: Regs, sr: regs::Isr) { r.icr().write(|w| *w = regs::Icr(sr.0)); } pub(crate) mod sealed { use super::*; pub trait BasicInstance: crate::rcc::RccPeripheral { const MULTIPLIER: u32; type Interrupt: crate::interrupt::Interrupt; fn regs() -> Regs; } pub trait FullInstance: BasicInstance { fn regs_uart() -> crate::pac::usart::Usart; } } pub trait BasicInstance: sealed::BasicInstance {} pub trait FullInstance: sealed::FullInstance {} pin_trait!(RxPin, BasicInstance); pin_trait!(TxPin, BasicInstance); pin_trait!(CtsPin, BasicInstance); pin_trait!(RtsPin, BasicInstance); pin_trait!(CkPin, BasicInstance); dma_trait!(TxDma, BasicInstance); dma_trait!(RxDma, BasicInstance); macro_rules! impl_lpuart { ($inst:ident, $irq:ident, $mul:expr) => { impl sealed::BasicInstance for crate::peripherals::$inst { const MULTIPLIER: u32 = $mul; type Interrupt = crate::interrupt::$irq; fn regs() -> Regs { Regs(crate::pac::$inst.0) } } impl BasicInstance for peripherals::$inst {} }; } foreach_interrupt!( ($inst:ident, lpuart, $block:ident, $signal_name:ident, $irq:ident) => { impl_lpuart!($inst, $irq, 255); }; ($inst:ident, usart, $block:ident, $signal_name:ident, $irq:ident) => { impl_lpuart!($inst, $irq, 1); impl sealed::FullInstance for peripherals::$inst { fn regs_uart() -> crate::pac::usart::Usart { crate::pac::$inst } } impl FullInstance for peripherals::$inst { } }; );