use crate::pac::{FLASH, RCC}; use crate::peripherals; use crate::rcc::{get_freqs, set_freqs, Clocks}; use crate::time::Hertz; use core::marker::PhantomData; use embassy::util::Unborrow; mod max; use max::{PCLK1_MAX, PCLK2_MAX}; const HSI: u32 = 16_000_000; /// Clocks configutation #[non_exhaustive] #[derive(Default)] pub struct Config { pub hse: Option, pub bypass_hse: bool, pub pll48: bool, pub sys_ck: Option, pub hclk: Option, pub pclk1: Option, pub pclk2: Option, pub enable_debug_wfe: bool, } /// RCC peripheral pub struct Rcc<'d> { config: Config, phantom: PhantomData<&'d mut peripherals::RCC>, } impl<'d> Rcc<'d> { pub fn new(_rcc: impl Unborrow + 'd, config: Config) -> Self { Self { config, phantom: PhantomData, } } fn freeze(mut self) -> Clocks { use crate::pac::rcc::vals::{Hpre, Hsebyp, Ppre, Sw}; let pllsrcclk = self.config.hse.map(|hse| hse.0).unwrap_or(HSI); let sysclk = self.config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk); let sysclk_on_pll = sysclk != pllsrcclk; let plls = self.setup_pll( pllsrcclk, self.config.hse.is_some(), if sysclk_on_pll { Some(sysclk) } else { None }, self.config.pll48, ); if self.config.pll48 { assert!( // USB specification allows +-0.25% plls.pll48clk .map(|freq| (48_000_000 - freq as i32).abs() <= 120_000) .unwrap_or(false) ); } let sysclk = if sysclk_on_pll { plls.pllsysclk.unwrap() } else { sysclk }; let hclk = self.config.hclk.map(|h| h.0).unwrap_or(sysclk); let (hpre_bits, hpre_div) = match (sysclk + hclk - 1) / hclk { 0 => unreachable!(), 1 => (Hpre::DIV1, 1), 2 => (Hpre::DIV2, 2), 3..=5 => (Hpre::DIV4, 4), 6..=11 => (Hpre::DIV8, 8), 12..=39 => (Hpre::DIV16, 16), 40..=95 => (Hpre::DIV64, 64), 96..=191 => (Hpre::DIV128, 128), 192..=383 => (Hpre::DIV256, 256), _ => (Hpre::DIV512, 512), }; // Calculate real AHB clock let hclk = sysclk / hpre_div; let pclk1 = self .config .pclk1 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(PCLK1_MAX, hclk)); let (ppre1_bits, ppre1) = match (hclk + pclk1 - 1) / pclk1 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul1 = if ppre1 == 1 { 1 } else { 2 }; // Calculate real APB1 clock let pclk1 = hclk / ppre1; assert!(pclk1 <= PCLK1_MAX); let pclk2 = self .config .pclk2 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(PCLK2_MAX, hclk)); let (ppre2_bits, ppre2) = match (hclk + pclk2 - 1) / pclk2 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul2 = if ppre2 == 1 { 1 } else { 2 }; // Calculate real APB2 clock let pclk2 = hclk / ppre2; assert!(pclk2 <= PCLK2_MAX); Self::flash_setup(sysclk); if self.config.hse.is_some() { // NOTE(unsafe) We own the peripheral block unsafe { RCC.cr().modify(|w| { w.set_hsebyp(Hsebyp(self.config.bypass_hse as u8)); w.set_hseon(true); }); while !RCC.cr().read().hserdy() {} } } if plls.use_pll { unsafe { RCC.cr().modify(|w| w.set_pllon(true)); // TODO: PWR setup for HCLK > 168MHz while !RCC.cr().read().pllrdy() {} } } unsafe { RCC.cfgr().modify(|w| { w.set_ppre2(Ppre(ppre2_bits)); w.set_ppre1(Ppre(ppre1_bits)); w.set_hpre(hpre_bits); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); RCC.cfgr().modify(|w| { w.set_sw(if sysclk_on_pll { Sw::PLL } else if self.config.hse.is_some() { Sw::HSE } else { Sw::HSI }) }); } if self.config.enable_debug_wfe { unsafe { RCC.ahb1enr().modify(|w| w.set_dma1en(true)); critical_section::with(|_| { crate::dbgmcu::Dbgmcu::enable_all(); }); } } Clocks { sys: Hertz(sysclk), apb1: Hertz(pclk1), apb2: Hertz(pclk2), apb1_tim: Hertz(pclk1 * timer_mul1), apb2_tim: Hertz(pclk2 * timer_mul2), ahb1: Hertz(hclk), ahb2: Hertz(hclk), ahb3: Hertz(hclk), pll48: plls.pll48clk.map(Hertz), } } // Safety: RCC init must have been called pub fn clocks(&self) -> &'static Clocks { unsafe { get_freqs() } } fn setup_pll( &mut self, pllsrcclk: u32, use_hse: bool, pllsysclk: Option, pll48clk: bool, ) -> PllResults { use crate::pac::rcc::vals::{Pllp, Pllsrc}; let sysclk = pllsysclk.unwrap_or(pllsrcclk); if pllsysclk.is_none() && !pll48clk { // NOTE(unsafe) We have a mutable borrow to the owner of the RegBlock unsafe { RCC.pllcfgr() .modify(|w| w.set_pllsrc(Pllsrc(use_hse as u8))); } return PllResults { use_pll: false, pllsysclk: None, pll48clk: None, }; } // Input divisor from PLL source clock, must result to frequency in // the range from 1 to 2 MHz let pllm_min = (pllsrcclk + 1_999_999) / 2_000_000; let pllm_max = pllsrcclk / 1_000_000; // Sysclk output divisor must be one of 2, 4, 6 or 8 let sysclk_div = core::cmp::min(8, (432_000_000 / sysclk) & !1); let target_freq = if pll48clk { 48_000_000 } else { sysclk * sysclk_div }; // Find the lowest pllm value that minimize the difference between // target frequency and the real vco_out frequency. let pllm = (pllm_min..=pllm_max) .min_by_key(|pllm| { let vco_in = pllsrcclk / pllm; let plln = target_freq / vco_in; target_freq - vco_in * plln }) .unwrap(); let vco_in = pllsrcclk / pllm; assert!((1_000_000..=2_000_000).contains(&vco_in)); // Main scaler, must result in >= 100MHz (>= 192MHz for F401) // and <= 432MHz, min 50, max 432 let plln = if pll48clk { // try the different valid pllq according to the valid // main scaller values, and take the best let pllq = (4..=9) .min_by_key(|pllq| { let plln = 48_000_000 * pllq / vco_in; let pll48_diff = 48_000_000 - vco_in * plln / pllq; let sysclk_diff = (sysclk as i32 - (vco_in * plln / sysclk_div) as i32).abs(); (pll48_diff, sysclk_diff) }) .unwrap(); 48_000_000 * pllq / vco_in } else { sysclk * sysclk_div / vco_in }; let pllp = (sysclk_div / 2) - 1; let pllq = (vco_in * plln + 47_999_999) / 48_000_000; let real_pll48clk = vco_in * plln / pllq; unsafe { RCC.pllcfgr().modify(|w| { w.set_pllm(pllm as u8); w.set_plln(plln as u16); w.set_pllp(Pllp(pllp as u8)); w.set_pllq(pllq as u8); w.set_pllsrc(Pllsrc(use_hse as u8)); }); } let real_pllsysclk = vco_in * plln / sysclk_div; PllResults { use_pll: true, pllsysclk: Some(real_pllsysclk), pll48clk: if pll48clk { Some(real_pll48clk) } else { None }, } } fn flash_setup(sysclk: u32) { use crate::pac::flash::vals::Latency; // Be conservative with voltage ranges const FLASH_LATENCY_STEP: u32 = 30_000_000; critical_section::with(|_| unsafe { FLASH .acr() .modify(|w| w.set_latency(Latency(((sysclk - 1) / FLASH_LATENCY_STEP) as u8))); }); } } pub unsafe fn init(config: Config) { let r = ::steal(); let clocks = Rcc::new(r, config).freeze(); set_freqs(clocks); } struct PllResults { use_pll: bool, pllsysclk: Option, pll48clk: Option, }