use core::sync::atomic::{compiler_fence, fence, Ordering}; use embassy_net::PacketBuf; use stm32_metapac::eth::vals::St; use vcell::VolatileCell; use crate::pac::ETH; #[non_exhaustive] #[derive(Debug, Copy, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { NoBufferAvailable, // TODO: Break down this error into several others TransmissionError, } /// Transmit and Receive Descriptor fields #[allow(dead_code)] mod tx_consts { pub const TXDESC_0_OWN: u32 = 1 << 31; pub const TXDESC_0_IOC: u32 = 1 << 30; // First segment of frame pub const TXDESC_0_FS: u32 = 1 << 28; // Last segment of frame pub const TXDESC_0_LS: u32 = 1 << 29; // Transmit end of ring pub const TXDESC_0_TER: u32 = 1 << 21; // Second address chained pub const TXDESC_0_TCH: u32 = 1 << 20; // Error status pub const TXDESC_0_ES: u32 = 1 << 15; // Transmit buffer size pub const TXDESC_1_TBS_SHIFT: usize = 0; pub const TXDESC_1_TBS_MASK: u32 = 0x0fff << TXDESC_1_TBS_SHIFT; } use tx_consts::*; /// Transmit Descriptor representation /// /// * tdes0: control /// * tdes1: buffer lengths /// * tdes2: data buffer address /// * tdes3: next descriptor address #[repr(C)] struct TDes { tdes0: VolatileCell, tdes1: VolatileCell, tdes2: VolatileCell, tdes3: VolatileCell, } impl TDes { pub const fn new() -> Self { Self { tdes0: VolatileCell::new(0), tdes1: VolatileCell::new(0), tdes2: VolatileCell::new(0), tdes3: VolatileCell::new(0), } } /// Return true if this TDes is not currently owned by the DMA pub fn available(&self) -> bool { (self.tdes0.get() & TXDESC_0_OWN) == 0 } /// Pass ownership to the DMA engine fn set_owned(&mut self) { // "Preceding reads and writes cannot be moved past subsequent writes." fence(Ordering::Release); compiler_fence(Ordering::Release); self.tdes0.set(self.tdes0.get() | TXDESC_0_OWN); // Used to flush the store buffer as fast as possible to make the buffer available for the // DMA. fence(Ordering::SeqCst); } fn set_buffer1(&mut self, buffer: *const u8) { self.tdes2.set(buffer as u32); } fn set_buffer1_len(&mut self, len: usize) { self.tdes1 .set((self.tdes1.get() & !TXDESC_1_TBS_MASK) | ((len as u32) << TXDESC_1_TBS_SHIFT)); } // points to next descriptor (RCH) fn set_buffer2(&mut self, buffer: *const u8) { self.tdes3.set(buffer as u32); } fn set_end_of_ring(&mut self) { self.tdes0.set(self.tdes0.get() | TXDESC_0_TER); } // set up as a part fo the ring buffer - configures the tdes pub fn setup(&mut self, next: Option<&Self>) { // Defer this initialization to this function, so we can have `RingEntry` on bss. self.tdes0 .set(TXDESC_0_TCH | TXDESC_0_IOC | TXDESC_0_FS | TXDESC_0_LS); match next { Some(next) => self.set_buffer2(next as *const TDes as *const u8), None => { self.set_buffer2(0 as *const u8); self.set_end_of_ring(); } } } } pub(crate) struct TDesRing { descriptors: [TDes; N], buffers: [Option; N], next_entry: usize, } impl TDesRing { pub const fn new() -> Self { const TDES: TDes = TDes::new(); const BUFFERS: Option = None; Self { descriptors: [TDES; N], buffers: [BUFFERS; N], next_entry: 0, } } /// Initialise this TDesRing. Assume TDesRing is corrupt /// /// The current memory address of the buffers inside this TDesRing /// will be stored in the descriptors, so ensure the TDesRing is /// not moved after initialisation. pub(crate) fn init(&mut self) { assert!(N > 0); { let mut previous: Option<&mut TDes> = None; for entry in self.descriptors.iter_mut() { if let Some(prev) = &mut previous { prev.setup(Some(entry)); } previous = Some(entry); } if let Some(entry) = &mut previous { entry.setup(None); } } self.next_entry = 0; // Register txdescriptor start // NOTE (unsafe) Used for atomic writes unsafe { ETH.ethernet_dma() .dmatdlar() .write(|w| w.0 = &self.descriptors as *const _ as u32); } // "Preceding reads and writes cannot be moved past subsequent writes." #[cfg(feature = "fence")] fence(Ordering::Release); // We don't need a compiler fence here because all interactions with `Descriptor` are // volatiles // Start transmission unsafe { ETH.ethernet_dma() .dmaomr() .modify(|w| w.set_st(St::STARTED)) }; } /// Return true if a TDes is available for use pub(crate) fn available(&self) -> bool { self.descriptors[self.next_entry].available() } pub(crate) fn transmit(&mut self, pkt: PacketBuf) -> Result<(), Error> { if !self.available() { return Err(Error::NoBufferAvailable); } let descriptor = &mut self.descriptors[self.next_entry]; let pkt_len = pkt.len(); let address = pkt.as_ptr() as *const u8; descriptor.set_buffer1(address); descriptor.set_buffer1_len(pkt_len); self.buffers[self.next_entry].replace(pkt); descriptor.set_owned(); // Ensure changes to the descriptor are committed before DMA engine sees tail pointer store. // This will generate an DMB instruction. // "Preceding reads and writes cannot be moved past subsequent writes." fence(Ordering::Release); // Move the tail pointer (TPR) to the next descriptor self.next_entry = (self.next_entry + 1) % N; // Request the DMA engine to poll the latest tx descriptor unsafe { ETH.ethernet_dma().dmatpdr().modify(|w| w.0 = 1) } Ok(()) } pub(crate) fn on_interrupt(&mut self) -> Result<(), Error> { let previous = (self.next_entry + N - 1) % N; let td = &self.descriptors[previous]; // DMB to ensure that we are reading an updated value, probably not needed at the hardware // level, but this is also a hint to the compiler that we're syncing on the buffer. fence(Ordering::SeqCst); let tdes0 = td.tdes0.get(); if tdes0 & TXDESC_0_OWN != 0 { // Transmission isn't done yet, probably a receive interrupt that fired this return Ok(()); } // Release the buffer self.buffers[previous].take(); if tdes0 & TXDESC_0_ES != 0 { Err(Error::TransmissionError) } else { Ok(()) } } }