use super::sealed::RccPeripheral; use crate::pac::pwr::vals::Vos; use crate::pac::rcc::vals::{Hpre, Ppre, Sw}; use crate::pac::{FLASH, PWR, RCC}; use crate::rcc::{set_freqs, Clocks}; use crate::time::Hertz; const HSI: u32 = 16_000_000; /// Clocks configuration #[non_exhaustive] #[derive(Default)] pub struct Config { pub hse: Option, pub bypass_hse: bool, pub hclk: Option, pub sys_ck: Option, pub pclk1: Option, pub pclk2: Option, pub pll48: bool, } unsafe fn setup_pll( pllsrcclk: u32, use_hse: bool, pllsysclk: Option, pll48clk: bool, ) -> PllResults { use crate::pac::rcc::vals::{Pllp, Pllsrc}; let sysclk = pllsysclk.unwrap_or(pllsrcclk); if pllsysclk.is_none() && !pll48clk { RCC.pllcfgr() .modify(|w| w.set_pllsrc(Pllsrc(use_hse as u8))); return PllResults { use_pll: false, pllsysclk: None, pll48clk: None, }; } // Input divisor from PLL source clock, must result to frequency in // the range from 1 to 2 MHz let pllm_min = (pllsrcclk + 1_999_999) / 2_000_000; let pllm_max = pllsrcclk / 1_000_000; // Sysclk output divisor must be one of 2, 4, 6 or 8 let sysclk_div = core::cmp::min(8, (432_000_000 / sysclk) & !1); let target_freq = if pll48clk { 48_000_000 } else { sysclk * sysclk_div }; // Find the lowest pllm value that minimize the difference between // target frequency and the real vco_out frequency. let pllm = unwrap!((pllm_min..=pllm_max).min_by_key(|pllm| { let vco_in = pllsrcclk / pllm; let plln = target_freq / vco_in; target_freq - vco_in * plln })); let vco_in = pllsrcclk / pllm; assert!((1_000_000..=2_000_000).contains(&vco_in)); // Main scaler, must result in >= 100MHz (>= 192MHz for F401) // and <= 432MHz, min 50, max 432 let plln = if pll48clk { // try the different valid pllq according to the valid // main scaller values, and take the best let pllq = unwrap!((4..=9).min_by_key(|pllq| { let plln = 48_000_000 * pllq / vco_in; let pll48_diff = 48_000_000 - vco_in * plln / pllq; let sysclk_diff = (sysclk as i32 - (vco_in * plln / sysclk_div) as i32).abs(); (pll48_diff, sysclk_diff) })); 48_000_000 * pllq / vco_in } else { sysclk * sysclk_div / vco_in }; let pllp = (sysclk_div / 2) - 1; let pllq = (vco_in * plln + 47_999_999) / 48_000_000; let real_pll48clk = vco_in * plln / pllq; RCC.pllcfgr().modify(|w| { w.set_pllm(pllm as u8); w.set_plln(plln as u16); w.set_pllp(Pllp(pllp as u8)); w.set_pllq(pllq as u8); w.set_pllsrc(Pllsrc(use_hse as u8)); }); let real_pllsysclk = vco_in * plln / sysclk_div; PllResults { use_pll: true, pllsysclk: Some(real_pllsysclk), pll48clk: if pll48clk { Some(real_pll48clk) } else { None }, } } unsafe fn flash_setup(sysclk: u32) { use crate::pac::flash::vals::Latency; // Be conservative with voltage ranges const FLASH_LATENCY_STEP: u32 = 30_000_000; critical_section::with(|_| { FLASH .acr() .modify(|w| w.set_latency(Latency(((sysclk - 1) / FLASH_LATENCY_STEP) as u8))); }); } pub(crate) unsafe fn init(config: Config) { crate::peripherals::PWR::enable(); if let Some(hse) = config.hse { if config.bypass_hse { assert!((max::HSE_BYPASS_MIN..=max::HSE_BYPASS_MAX).contains(&hse.0)); } else { assert!((max::HSE_OSC_MIN..=max::HSE_OSC_MAX).contains(&hse.0)); } } let pllsrcclk = config.hse.map(|hse| hse.0).unwrap_or(HSI); let sysclk = config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk); let sysclk_on_pll = sysclk != pllsrcclk; assert!((max::SYSCLK_MIN..=max::SYSCLK_MAX).contains(&sysclk)); let plls = setup_pll( pllsrcclk, config.hse.is_some(), if sysclk_on_pll { Some(sysclk) } else { None }, config.pll48, ); if config.pll48 { let freq = unwrap!(plls.pll48clk); assert!((max::PLL_48_CLK as i32 - freq as i32).abs() <= max::PLL_48_TOLERANCE as i32); } let sysclk = if sysclk_on_pll { unwrap!(plls.pllsysclk) } else { sysclk }; // AHB prescaler let hclk = config.hclk.map(|h| h.0).unwrap_or(sysclk); let (hpre_bits, hpre_div) = match (sysclk + hclk - 1) / hclk { 0 => unreachable!(), 1 => (Hpre::DIV1, 1), 2 => (Hpre::DIV2, 2), 3..=5 => (Hpre::DIV4, 4), 6..=11 => (Hpre::DIV8, 8), 12..=39 => (Hpre::DIV16, 16), 40..=95 => (Hpre::DIV64, 64), 96..=191 => (Hpre::DIV128, 128), 192..=383 => (Hpre::DIV256, 256), _ => (Hpre::DIV512, 512), }; // Calculate real AHB clock let hclk = sysclk / hpre_div; assert!(hclk <= max::HCLK_MAX); let pclk1 = config .pclk1 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(max::PCLK1_MAX, hclk)); let (ppre1_bits, ppre1) = match (hclk + pclk1 - 1) / pclk1 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul1 = if ppre1 == 1 { 1 } else { 2 }; // Calculate real APB1 clock let pclk1 = hclk / ppre1; assert!((max::PCLK1_MIN..=max::PCLK1_MAX).contains(&pclk1)); let pclk2 = config .pclk2 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(max::PCLK2_MAX, hclk)); let (ppre2_bits, ppre2) = match (hclk + pclk2 - 1) / pclk2 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul2 = if ppre2 == 1 { 1 } else { 2 }; // Calculate real APB2 clock let pclk2 = hclk / ppre2; assert!((max::PCLK2_MIN..=max::PCLK2_MAX).contains(&pclk2)); flash_setup(sysclk); if config.hse.is_some() { RCC.cr().modify(|w| { w.set_hsebyp(config.bypass_hse); w.set_hseon(true); }); while !RCC.cr().read().hserdy() {} } if plls.use_pll { RCC.cr().modify(|w| w.set_pllon(false)); // enable PWR and setup VOSScale RCC.apb1enr().modify(|w| w.set_pwren(true)); let vos_scale = if sysclk <= 144_000_000 { 3 } else if sysclk <= 168_000_000 { 2 } else { 1 }; PWR.cr1().modify(|w| { w.set_vos(match vos_scale { 3 => Vos::SCALE3, 2 => Vos::SCALE2, 1 => Vos::SCALE1, _ => panic!("Invalid VOS Scale."), }) }); RCC.cr().modify(|w| w.set_pllon(true)); if hclk > max::HCLK_OVERDRIVE_FREQUENCY { PWR.cr1().modify(|w| w.set_oden(true)); while !PWR.csr1().read().odrdy() {} PWR.cr1().modify(|w| w.set_odswen(true)); while !PWR.csr1().read().odswrdy() {} } while !RCC.cr().read().pllrdy() {} } RCC.cfgr().modify(|w| { w.set_ppre2(Ppre(ppre2_bits)); w.set_ppre1(Ppre(ppre1_bits)); w.set_hpre(hpre_bits); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); RCC.cfgr().modify(|w| { w.set_sw(if sysclk_on_pll { Sw::PLL } else if config.hse.is_some() { Sw::HSE } else { Sw::HSI }) }); set_freqs(Clocks { sys: Hertz(sysclk), apb1: Hertz(pclk1), apb2: Hertz(pclk2), apb1_tim: Hertz(pclk1 * timer_mul1), apb2_tim: Hertz(pclk2 * timer_mul2), ahb1: Hertz(hclk), ahb2: Hertz(hclk), ahb3: Hertz(hclk), pll48: plls.pll48clk.map(Hertz), }); } struct PllResults { use_pll: bool, pllsysclk: Option, pll48clk: Option, } mod max { pub(crate) const HSE_OSC_MIN: u32 = 4_000_000; pub(crate) const HSE_OSC_MAX: u32 = 26_000_000; pub(crate) const HSE_BYPASS_MIN: u32 = 1_000_000; pub(crate) const HSE_BYPASS_MAX: u32 = 50_000_000; pub(crate) const HCLK_MAX: u32 = 216_000_000; pub(crate) const HCLK_OVERDRIVE_FREQUENCY: u32 = 180_000_000; pub(crate) const SYSCLK_MIN: u32 = 12_500_000; pub(crate) const SYSCLK_MAX: u32 = 216_000_000; pub(crate) const PCLK1_MIN: u32 = SYSCLK_MIN; pub(crate) const PCLK1_MAX: u32 = SYSCLK_MAX / 4; pub(crate) const PCLK2_MIN: u32 = SYSCLK_MIN; pub(crate) const PCLK2_MAX: u32 = SYSCLK_MAX / 2; // USB specification allows +-0.25% pub(crate) const PLL_48_CLK: u32 = 48_000_000; pub(crate) const PLL_48_TOLERANCE: u32 = 120_000; }