// Credit: taken from `rp-hal` (also licensed Apache+MIT) // https://github.com/rp-rs/rp-hal/blob/main/rp2040-hal/src/float/conv.rs use super::Float; use crate::rom_data; // Make sure this stays as a separate call, because when it's inlined the // compiler will move the save of the registers used to contain the divider // state into the function prologue. That save and restore (push/pop) takes // longer than the actual division, so doing it in the common case where // they are not required wastes a lot of time. #[inline(never)] #[cold] fn save_divider_and_call(f: F) -> R where F: FnOnce() -> R, { let sio = rp_pac::SIO; unsafe { // Since we can't save the signed-ness of the calculation, we have to make // sure that there's at least an 8 cycle delay before we read the result. // The Pico SDK ensures this by using a 6 cycle push and two 1 cycle reads. // Since we can't be sure the Rust implementation will optimize to the same, // just use an explicit wait. while !sio.div().csr().read().ready() {} // Read the quotient last, since that's what clears the dirty flag let dividend = sio.div().udividend().read(); let divisor = sio.div().udivisor().read(); let remainder = sio.div().remainder().read(); let quotient = sio.div().quotient().read(); // If we get interrupted here (before a write sets the DIRTY flag) its fine, since // we have the full state, so the interruptor doesn't have to restore it. Once the // write happens and the DIRTY flag is set, the interruptor becomes responsible for // restoring our state. let result = f(); // If we are interrupted here, then the interruptor will start an incorrect calculation // using a wrong divisor, but we'll restore the divisor and result ourselves correctly. // This sets DIRTY, so any interruptor will save the state. sio.div().udividend().write_value(dividend); // If we are interrupted here, the the interruptor may start the calculation using // incorrectly signed inputs, but we'll restore the result ourselves. // This sets DIRTY, so any interruptor will save the state. sio.div().udivisor().write_value(divisor); // If we are interrupted here, the interruptor will have restored everything but the // quotient may be wrongly signed. If the calculation started by the above writes is // still ongoing it is stopped, so it won't replace the result we're restoring. // DIRTY and READY set, but only DIRTY matters to make the interruptor save the state. sio.div().remainder().write_value(remainder); // State fully restored after the quotient write. This sets both DIRTY and READY, so // whatever we may have interrupted can read the result. sio.div().quotient().write_value(quotient); result } } fn save_divider(f: F) -> R where F: FnOnce() -> R, { let sio = rp_pac::SIO; if unsafe { !sio.div().csr().read().dirty() } { // Not dirty, so nothing is waiting for the calculation. So we can just // issue it directly without a save/restore. f() } else { save_divider_and_call(f) } } trait ROMDiv { fn rom_div(self, b: Self) -> Self; } impl ROMDiv for f32 { fn rom_div(self, b: Self) -> Self { // ROM implementation uses the hardware divider, so we have to save it save_divider(|| rom_data::float_funcs::fdiv(self, b)) } } impl ROMDiv for f64 { fn rom_div(self, b: Self) -> Self { // ROM implementation uses the hardware divider, so we have to save it save_divider(|| rom_data::double_funcs::ddiv(self, b)) } } fn div(a: F, b: F) -> F { if a.is_not_finite() { if b.is_not_finite() { // inf/NaN / inf/NaN = NaN return F::NAN; } if b.is_zero() { // inf/NaN / 0 = NaN return F::NAN; } return if b.is_sign_negative() { // [+/-]inf/NaN / (-X) = [-/+]inf/NaN a.negate() } else { // [-]inf/NaN / X = [-]inf/NaN a }; } if b.is_nan() { // X / NaN = NaN return b; } // ROM handles X / 0 = [-]inf and X / [-]inf = [-]0, so we only // need to catch 0 / 0 if b.is_zero() && a.is_zero() { return F::NAN; } a.rom_div(b) } intrinsics! { #[alias = __divsf3vfp] #[aeabi = __aeabi_fdiv] extern "C" fn __divsf3(a: f32, b: f32) -> f32 { div(a, b) } #[bootrom_v2] #[alias = __divdf3vfp] #[aeabi = __aeabi_ddiv] extern "C" fn __divdf3(a: f64, b: f64) -> f64 { div(a, b) } }