/// PHY Address: (0..=0x1F), 5-bits long. #[allow(dead_code)] type PhyAddr = u8; /// PHY Register: (0..=0x1F), 5-bits long. #[allow(dead_code)] type RegC22 = u8; /// PHY Register Clause 45. #[allow(dead_code)] type RegC45 = u16; /// PHY Register Value #[allow(dead_code)] type RegVal = u16; #[allow(dead_code)] const REG13: RegC22 = 13; #[allow(dead_code)] const REG14: RegC22 = 14; #[allow(dead_code)] const PHYADDR_MASK: u8 = 0x1f; #[allow(dead_code)] const DEV_MASK: u8 = 0x1f; #[allow(dead_code)] #[repr(u16)] enum Reg13Op { Addr = 0b00 << 14, Write = 0b01 << 14, PostReadIncAddr = 0b10 << 14, Read = 0b11 << 14, } /// `MdioBus` trait /// Driver needs to implement the Clause 22 /// Optional Clause 45 is the device supports this. /// /// Clause 45 methodes are bases on pub trait MdioBus { type Error; /// Read, Clause 22 async fn read_cl22(&mut self, phy_id: PhyAddr, reg: RegC22) -> Result; /// Write, Clause 22 async fn write_cl22(&mut self, phy_id: PhyAddr, reg: RegC22, reg_val: RegVal) -> Result<(), Self::Error>; /// Read, Clause 45 /// This is the default implementation. /// Many hardware these days support direct Clause 45 operations. /// Implement this function when your hardware supports it. async fn read_cl45(&mut self, phy_id: PhyAddr, regc45: (u8, RegC45)) -> Result { // Write FN let val = (Reg13Op::Addr as RegVal) | RegVal::from(regc45.0 & DEV_MASK); self.write_cl22(phy_id, REG13, val).await?; // Write Addr self.write_cl22(phy_id, REG14, regc45.1).await?; // Write FN let val = (Reg13Op::Read as RegVal) | RegVal::from(regc45.0 & DEV_MASK); self.write_cl22(phy_id, REG13, val).await?; // Write Addr self.read_cl22(phy_id, REG14).await } /// Write, Clause 45 /// This is the default implementation. /// Many hardware these days support direct Clause 45 operations. /// Implement this function when your hardware supports it. async fn write_cl45(&mut self, phy_id: PhyAddr, regc45: (u8, RegC45), reg_val: RegVal) -> Result<(), Self::Error> { let dev_addr = RegVal::from(regc45.0 & DEV_MASK); let reg = regc45.1; // Write FN let val = (Reg13Op::Addr as RegVal) | dev_addr; self.write_cl22(phy_id, REG13, val).await?; // Write Addr self.write_cl22(phy_id, REG14, reg).await?; // Write FN let val = (Reg13Op::Write as RegVal) | dev_addr; self.write_cl22(phy_id, REG13, val).await?; // Write Addr self.write_cl22(phy_id, REG14, reg_val).await } } #[cfg(test)] mod tests { use core::convert::Infallible; use super::{MdioBus, PhyAddr, RegC22, RegVal}; #[derive(Debug, PartialEq, Eq)] enum A { Read(PhyAddr, RegC22), Write(PhyAddr, RegC22, RegVal), } struct MockMdioBus(Vec); impl MockMdioBus { pub fn clear(&mut self) { self.0.clear(); } } impl MdioBus for MockMdioBus { type Error = Infallible; async fn write_cl22( &mut self, phy_id: super::PhyAddr, reg: super::RegC22, reg_val: super::RegVal, ) -> Result<(), Self::Error> { self.0.push(A::Write(phy_id, reg, reg_val)); Ok(()) } async fn read_cl22( &mut self, phy_id: super::PhyAddr, reg: super::RegC22, ) -> Result { self.0.push(A::Read(phy_id, reg)); Ok(0) } } #[futures_test::test] async fn read_test() { let mut mdiobus = MockMdioBus(Vec::with_capacity(20)); mdiobus.clear(); mdiobus.read_cl22(0x01, 0x00).await.unwrap(); assert_eq!(mdiobus.0, vec![A::Read(0x01, 0x00)]); mdiobus.clear(); mdiobus.read_cl45(0x01, (0xBB, 0x1234)).await.unwrap(); assert_eq!( mdiobus.0, vec![ #[allow(clippy::identity_op)] A::Write(0x01, 13, (0b00 << 14) | 27), A::Write(0x01, 14, 0x1234), A::Write(0x01, 13, (0b11 << 14) | 27), A::Read(0x01, 14) ] ); } #[futures_test::test] async fn write_test() { let mut mdiobus = MockMdioBus(Vec::with_capacity(20)); mdiobus.clear(); mdiobus.write_cl22(0x01, 0x00, 0xABCD).await.unwrap(); assert_eq!(mdiobus.0, vec![A::Write(0x01, 0x00, 0xABCD)]); mdiobus.clear(); mdiobus.write_cl45(0x01, (0xBB, 0x1234), 0xABCD).await.unwrap(); assert_eq!( mdiobus.0, vec![ A::Write(0x01, 13, 27), A::Write(0x01, 14, 0x1234), A::Write(0x01, 13, (0b01 << 14) | 27), A::Write(0x01, 14, 0xABCD) ] ); } }