use self::sealed::Instance; use crate::peripherals::IPCC; use crate::rcc::sealed::RccPeripheral; #[non_exhaustive] #[derive(Clone, Copy, Default)] pub struct Config { // TODO: add IPCC peripheral configuration, if any, here // reserved for future use } #[derive(Debug, Clone, Copy)] #[repr(C)] pub enum IpccChannel { Channel1 = 0, Channel2 = 1, Channel3 = 2, Channel4 = 3, Channel5 = 4, Channel6 = 5, } pub mod sealed { pub trait Instance: crate::rcc::RccPeripheral { fn regs() -> crate::pac::ipcc::Ipcc; fn set_cpu2(enabled: bool); } } pub struct Ipcc; impl Ipcc { pub fn enable(_config: Config) { IPCC::enable(); IPCC::reset(); IPCC::set_cpu2(true); unsafe { _configure_pwr() }; let regs = IPCC::regs(); unsafe { regs.cpu(0).cr().modify(|w| { w.set_rxoie(true); w.set_txfie(true); }) } } pub fn c1_set_rx_channel(channel: IpccChannel, enabled: bool) { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { regs.cpu(0).mr().modify(|w| w.set_chom(channel as usize, !enabled)) } } pub fn c1_get_rx_channel(channel: IpccChannel) -> bool { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { !regs.cpu(0).mr().read().chom(channel as usize) } } #[allow(dead_code)] pub fn c2_set_rx_channel(channel: IpccChannel, enabled: bool) { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { regs.cpu(1).mr().modify(|w| w.set_chom(channel as usize, !enabled)) } } #[allow(dead_code)] pub fn c2_get_rx_channel(channel: IpccChannel) -> bool { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { !regs.cpu(1).mr().read().chom(channel as usize) } } pub fn c1_set_tx_channel(channel: IpccChannel, enabled: bool) { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { regs.cpu(0).mr().modify(|w| w.set_chfm(channel as usize, !enabled)) } } pub fn c1_get_tx_channel(channel: IpccChannel) -> bool { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { !regs.cpu(0).mr().read().chfm(channel as usize) } } #[allow(dead_code)] pub fn c2_set_tx_channel(channel: IpccChannel, enabled: bool) { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { regs.cpu(1).mr().modify(|w| w.set_chfm(channel as usize, !enabled)) } } #[allow(dead_code)] pub fn c2_get_tx_channel(channel: IpccChannel) -> bool { let regs = IPCC::regs(); // If bit is set to 1 then interrupt is disabled unsafe { !regs.cpu(1).mr().read().chfm(channel as usize) } } /// clears IPCC receive channel status for CPU1 pub fn c1_clear_flag_channel(channel: IpccChannel) { let regs = IPCC::regs(); unsafe { regs.cpu(0).scr().write(|w| w.set_chc(channel as usize, true)) } } #[allow(dead_code)] /// clears IPCC receive channel status for CPU2 pub fn c2_clear_flag_channel(channel: IpccChannel) { let regs = IPCC::regs(); unsafe { regs.cpu(1).scr().write(|w| w.set_chc(channel as usize, true)) } } pub fn c1_set_flag_channel(channel: IpccChannel) { let regs = IPCC::regs(); unsafe { regs.cpu(0).scr().write(|w| w.set_chs(channel as usize, true)) } } #[allow(dead_code)] pub fn c2_set_flag_channel(channel: IpccChannel) { let regs = IPCC::regs(); unsafe { regs.cpu(1).scr().write(|w| w.set_chs(channel as usize, true)) } } pub fn c1_is_active_flag(channel: IpccChannel) -> bool { let regs = IPCC::regs(); unsafe { regs.cpu(0).sr().read().chf(channel as usize) } } pub fn c2_is_active_flag(channel: IpccChannel) -> bool { let regs = IPCC::regs(); unsafe { regs.cpu(1).sr().read().chf(channel as usize) } } pub fn is_tx_pending(channel: IpccChannel) -> bool { !Self::c1_is_active_flag(channel) && Self::c1_get_tx_channel(channel) } pub fn is_rx_pending(channel: IpccChannel) -> bool { Self::c2_is_active_flag(channel) && Self::c1_get_rx_channel(channel) } } impl sealed::Instance for crate::peripherals::IPCC { fn regs() -> crate::pac::ipcc::Ipcc { crate::pac::IPCC } fn set_cpu2(enabled: bool) { unsafe { crate::pac::PWR.cr4().modify(|w| w.set_c2boot(enabled)) } } } unsafe fn _configure_pwr() { let pwr = crate::pac::PWR; let rcc = crate::pac::RCC; rcc.cfgr().modify(|w| w.set_stopwuck(true)); pwr.cr1().modify(|w| w.set_dbp(true)); pwr.cr1().modify(|w| w.set_dbp(true)); // configure LSE rcc.bdcr().modify(|w| w.set_lseon(true)); // select system clock source = PLL // set PLL coefficients // m: 2, // n: 12, // r: 3, // q: 4, // p: 3, let src_bits = 0b11; let pllp = (3 - 1) & 0b11111; let pllq = (4 - 1) & 0b111; let pllr = (3 - 1) & 0b111; let plln = 12 & 0b1111111; let pllm = (2 - 1) & 0b111; rcc.pllcfgr().modify(|w| { w.set_pllsrc(src_bits); w.set_pllm(pllm); w.set_plln(plln); w.set_pllr(pllr); w.set_pllp(pllp); w.set_pllpen(true); w.set_pllq(pllq); w.set_pllqen(true); }); // enable PLL rcc.cr().modify(|w| w.set_pllon(true)); rcc.cr().write(|w| w.set_hsion(false)); // while !rcc.cr().read().pllrdy() {} // configure SYSCLK mux to use PLL clocl rcc.cfgr().modify(|w| w.set_sw(0b11)); // configure CPU1 & CPU2 dividers rcc.cfgr().modify(|w| w.set_hpre(0)); // not divided rcc.extcfgr().modify(|w| { w.set_c2hpre(0b1000); // div2 w.set_shdhpre(0); // not divided }); // apply APB1 / APB2 values rcc.cfgr().modify(|w| { w.set_ppre1(0b000); // not divided w.set_ppre2(0b000); // not divided }); // TODO: required // set RF wake-up clock = LSE rcc.csr().modify(|w| w.set_rfwkpsel(0b01)); // set LPTIM1 & LPTIM2 clock source rcc.ccipr().modify(|w| { w.set_lptim1sel(0b00); // PCLK w.set_lptim2sel(0b00); // PCLK }); }