#![macro_use] use core::marker::PhantomData; use core::sync::atomic::{compiler_fence, Ordering}; use embassy::util::Unborrow; use embassy_hal_common::{low_power_wait_until, unborrow}; use crate::gpio::sealed::Pin as _; use crate::gpio::{AnyPin, OptionalPin as GpioOptionalPin}; use crate::interrupt::Interrupt; use crate::pac; use crate::util::slice_in_ram_or; /// Interface to the PWM peripheral pub struct SimplePwm<'d, T: Instance> { phantom: PhantomData<&'d mut T>, duty: [u16; 4], ch0: Option, ch1: Option, ch2: Option, ch3: Option, } pub struct SequencePwm<'d, T: Instance> { phantom: PhantomData<&'d mut T>, ch0: Option, ch1: Option, ch2: Option, ch3: Option, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// Max Sequence size is 32767 SequenceTooLong, /// Min Sequence count is 1 SequenceTimesAtLeastOne, /// EasyDMA can only read from data memory, read only buffers in flash will fail. DMABufferNotInDataMemory, } impl<'d, T: Instance> SequencePwm<'d, T> { /// Creates the interface to a PWM Sequence interface. /// /// Must be started by calling `start` /// /// # Safety /// /// The returned API is safe unless you use `mem::forget` (or similar safe /// mechanisms) on stack allocated buffers which which have been passed to /// [`new()`](SequencePwm::new). #[allow(unused_unsafe)] pub fn new<'a>( _pwm: impl Unborrow + 'd, ch0: impl Unborrow + 'd, ch1: impl Unborrow + 'd, ch2: impl Unborrow + 'd, ch3: impl Unborrow + 'd, config: SequenceConfig, sequence: &'a [u16], ) -> Result { slice_in_ram_or(sequence, Error::DMABufferNotInDataMemory)?; if sequence.len() > 32767 { return Err(Error::SequenceTooLong); } unborrow!(ch0, ch1, ch2, ch3); let r = T::regs(); if let Some(pin) = ch0.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch1.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch2.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch3.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } // if NoPin provided writes disconnected (top bit 1) 0x80000000 else // writes pin number ex 13 (0x0D) which is connected (top bit 0) r.psel.out[0].write(|w| unsafe { w.bits(ch0.psel_bits()) }); r.psel.out[1].write(|w| unsafe { w.bits(ch1.psel_bits()) }); r.psel.out[2].write(|w| unsafe { w.bits(ch2.psel_bits()) }); r.psel.out[3].write(|w| unsafe { w.bits(ch3.psel_bits()) }); // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); r.shorts.reset(); // Enable r.enable.write(|w| w.enable().enabled()); r.seq0 .ptr .write(|w| unsafe { w.bits(sequence.as_ptr() as u32) }); r.seq0 .cnt .write(|w| unsafe { w.bits(sequence.len() as u32) }); r.seq0.refresh.write(|w| unsafe { w.bits(config.refresh) }); r.seq0 .enddelay .write(|w| unsafe { w.bits(config.end_delay) }); r.seq1 .ptr .write(|w| unsafe { w.bits(sequence.as_ptr() as u32) }); r.seq1 .cnt .write(|w| unsafe { w.bits(sequence.len() as u32) }); r.seq1.refresh.write(|w| unsafe { w.bits(config.refresh) }); r.seq1 .enddelay .write(|w| unsafe { w.bits(config.end_delay) }); r.decoder.write(|w| { w.load().bits(config.sequence_load as u8); w.mode().refresh_count() }); r.mode .write(|w| unsafe { w.bits(config.counter_mode as u32) }); r.prescaler .write(|w| w.prescaler().bits(config.prescaler as u8)); r.countertop .write(|w| unsafe { w.countertop().bits(config.top) }); Ok(Self { phantom: PhantomData, ch0: ch0.degrade_optional(), ch1: ch1.degrade_optional(), ch2: ch2.degrade_optional(), ch3: ch3.degrade_optional(), }) } /// Start or restart playback #[inline(always)] pub fn start(&self, times: SequenceMode) -> Result<(), Error> { if let SequenceMode::Times(0) = times { return Err(Error::SequenceTimesAtLeastOne); } let r = T::regs(); self.stop(); r.enable.write(|w| w.enable().enabled()); // defensive before seqstart compiler_fence(Ordering::SeqCst); match times { // just the one time, no loop count SequenceMode::Times(1) => { r.loop_.write(|w| w.cnt().disabled()); // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[0].write(|w| unsafe { w.bits(0x01) }); // defensive wait until waveform is loaded after seqstart low_power_wait_until(|| r.events_seqend[0].read().bits() == 1); r.events_seqend[0].write(|w| w); } // loop count is how many times to play BOTH sequences // 2 total (1 x 2) // 3 total, (2 x 2) - 1 SequenceMode::Times(n) => { let odd = n & 1 == 1; let times = if odd { (n / 2) + 1 } else { n / 2 }; r.loop_.write(|w| unsafe { w.cnt().bits(times) }); // we can subtract 1 by starting at seq1 instead of seq0 if odd { // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[1].write(|w| unsafe { w.bits(0x01) }); // defensive wait until waveform is loaded after seqstart low_power_wait_until(|| r.events_seqend[1].read().bits() == 1); r.events_seqend[1].write(|w| w); } else { // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[0].write(|w| unsafe { w.bits(0x01) }); // defensive wait until waveform is loaded after seqstart low_power_wait_until(|| r.events_seqend[0].read().bits() == 1); r.events_seqend[0].write(|w| w); } } // to play infinitely, repeat the sequence one time, then have loops done self trigger seq0 again SequenceMode::Infinite => { r.loop_.write(|w| unsafe { w.cnt().bits(0x1) }); r.shorts.write(|w| w.loopsdone_seqstart0().enabled()); // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[0].write(|w| unsafe { w.bits(0x01) }); // defensive wait until waveform is loaded after seqstart low_power_wait_until(|| r.events_seqend[0].read().bits() == 1); r.events_seqend[0].write(|w| w); } } Ok(()) } /// Stop playback #[inline(always)] pub fn stop(&self) { let r = T::regs(); r.shorts.reset(); compiler_fence(Ordering::SeqCst); // tasks_stop() doesn't exist in all svds so write its bit instead r.tasks_stop.write(|w| unsafe { w.bits(0x01) }); } /// Disables the PWM generator. #[inline(always)] pub fn disable(&self) { let r = T::regs(); r.enable.write(|w| w.enable().disabled()); } } impl<'a, T: Instance> Drop for SequencePwm<'a, T> { fn drop(&mut self) { self.stop(); self.disable(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().write(|w| w); } info!("pwm drop: done"); } } /// Configure an infinite looping sequence for `simple_playback` #[non_exhaustive] pub struct SequenceConfig { /// Selects up mode or up-and-down mode for the counter pub counter_mode: CounterMode, /// Top value to be compared against buffer values pub top: u16, /// Configuration for PWM_CLK pub prescaler: Prescaler, /// How a sequence is read from RAM and is spread to the compare register pub sequence_load: SequenceLoad, /// Number of Times PWM periods to delay between each sequence sample pub refresh: u32, /// Number of Times PWM periods after the sequence ends before starting the next sequence pub end_delay: u32, } impl Default for SequenceConfig { fn default() -> SequenceConfig { SequenceConfig { counter_mode: CounterMode::Up, top: 1000, prescaler: Prescaler::Div16, sequence_load: SequenceLoad::Common, refresh: 0, end_delay: 0, } } } #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceMode { /// Run sequence n Times total Times(u16), /// Repeat until `stop` is called. Infinite, } /// PWM Base clock is system clock (16MHz) divided by prescaler #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum Prescaler { Div1, Div2, Div4, Div8, Div16, Div32, Div64, Div128, } /// How the sequence values are distributed across the channels #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceLoad { /// Provided sequence will be used across all channels Common, /// Provided sequence contains grouped values for each channel ex: /// [ch0_0_and_ch1_0, ch2_0_and_ch3_0, ... ch0_n_and_ch1_n, ch2_n_and_ch3_n] Grouped, /// Provided sequence contains individual values for each channel ex: /// [ch0_0, ch1_0, ch2_0, ch3_0... ch0_n, ch1_n, ch2_n, ch3_n] Individual, /// Similar to Individual mode, but only three channels are used. The fourth /// value is loaded into the pulse generator counter as its top value. Waveform, } #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum CounterMode { /// Up counter (edge-aligned PWM duty cycle) Up, /// Up and down counter (center-aligned PWM duty cycle) UpAndDown, } impl<'d, T: Instance> SimplePwm<'d, T> { /// Creates the interface to a PWM instance. /// /// Defaults the freq to 1Mhz, max_duty 32767, duty 0, and channels low. /// Must be started by calling `set_duty` /// /// # Safety /// /// The returned API is safe unless you use `mem::forget` (or similar safe /// mechanisms) on stack allocated buffers which which have been passed to /// [`new()`](SimplePwm::new). #[allow(unused_unsafe)] pub fn new( _pwm: impl Unborrow + 'd, ch0: impl Unborrow + 'd, ch1: impl Unborrow + 'd, ch2: impl Unborrow + 'd, ch3: impl Unborrow + 'd, ) -> Self { unborrow!(ch0, ch1, ch2, ch3); let r = T::regs(); if let Some(pin) = ch0.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch1.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch2.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = ch3.pin_mut() { pin.set_low(); pin.conf().write(|w| w.dir().output()); } // if NoPin provided writes disconnected (top bit 1) 0x80000000 else // writes pin number ex 13 (0x0D) which is connected (top bit 0) r.psel.out[0].write(|w| unsafe { w.bits(ch0.psel_bits()) }); r.psel.out[1].write(|w| unsafe { w.bits(ch1.psel_bits()) }); r.psel.out[2].write(|w| unsafe { w.bits(ch2.psel_bits()) }); r.psel.out[3].write(|w| unsafe { w.bits(ch3.psel_bits()) }); let pwm = Self { phantom: PhantomData, ch0: ch0.degrade_optional(), ch1: ch1.degrade_optional(), ch2: ch2.degrade_optional(), ch3: ch3.degrade_optional(), duty: [0; 4], }; // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); r.shorts.reset(); // Enable r.enable.write(|w| w.enable().enabled()); r.seq0 .ptr .write(|w| unsafe { w.bits(&pwm.duty as *const _ as u32) }); r.seq0.cnt.write(|w| unsafe { w.bits(4) }); r.seq0.refresh.write(|w| unsafe { w.bits(0) }); r.seq0.enddelay.write(|w| unsafe { w.bits(0) }); r.decoder.write(|w| { w.load().individual(); w.mode().refresh_count() }); r.mode.write(|w| w.updown().up()); r.prescaler.write(|w| w.prescaler().div_16()); r.countertop.write(|w| unsafe { w.countertop().bits(1000) }); r.loop_.write(|w| w.cnt().disabled()); pwm } /// Stop playback #[inline(always)] pub fn stop(&self) { let r = T::regs(); r.shorts.reset(); compiler_fence(Ordering::SeqCst); // tasks_stop() doesn't exist in all svds so write its bit instead r.tasks_stop.write(|w| unsafe { w.bits(0x01) }); } /// Enables the PWM generator. #[inline(always)] pub fn enable(&self) { let r = T::regs(); r.enable.write(|w| w.enable().enabled()); } /// Disables the PWM generator. #[inline(always)] pub fn disable(&self) { let r = T::regs(); r.enable.write(|w| w.enable().disabled()); } /// Sets duty cycle (15 bit) for a PWM channel. pub fn set_duty(&mut self, channel: usize, duty: u16) { let r = T::regs(); self.duty[channel] = duty & 0x7FFF; r.seq0 .ptr .write(|w| unsafe { w.bits(&self.duty as *const _ as u32) }); // defensive before seqstart compiler_fence(Ordering::SeqCst); // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[0].write(|w| unsafe { w.bits(1) }); // defensive wait until waveform is loaded after seqstart low_power_wait_until(|| r.events_seqend[0].read().bits() == 1); r.events_seqend[0].write(|w| w); } /// Sets the PWM clock prescaler. #[inline(always)] pub fn set_prescaler(&self, div: Prescaler) { T::regs().prescaler.write(|w| w.prescaler().bits(div as u8)); } /// Gets the PWM clock prescaler. #[inline(always)] pub fn prescaler(&self) -> Prescaler { match T::regs().prescaler.read().prescaler().bits() { 0 => Prescaler::Div1, 1 => Prescaler::Div2, 2 => Prescaler::Div4, 3 => Prescaler::Div8, 4 => Prescaler::Div16, 5 => Prescaler::Div32, 6 => Prescaler::Div64, 7 => Prescaler::Div128, _ => unreachable!(), } } /// Sets the maximum duty cycle value. #[inline(always)] pub fn set_max_duty(&self, duty: u16) { T::regs() .countertop .write(|w| unsafe { w.countertop().bits(duty.min(32767u16)) }); } /// Returns the maximum duty cycle value. #[inline(always)] pub fn max_duty(&self) -> u16 { T::regs().countertop.read().countertop().bits() } /// Sets the PWM output frequency. #[inline(always)] pub fn set_period(&self, freq: u32) { let clk = 16_000_000u32 >> (self.prescaler() as u8); let duty = clk / freq; self.set_max_duty(duty.min(32767) as u16); } /// Returns the PWM output frequency. #[inline(always)] pub fn period(&self) -> u32 { let clk = 16_000_000u32 >> (self.prescaler() as u8); let max_duty = self.max_duty() as u32; clk / max_duty } } impl<'a, T: Instance> Drop for SimplePwm<'a, T> { fn drop(&mut self) { self.stop(); self.disable(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().write(|w| w); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().write(|w| w); } info!("pwm drop: done"); } } pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> &'static pac::pwm0::RegisterBlock; } } pub trait Instance: Unborrow + sealed::Instance + 'static { type Interrupt: Interrupt; } macro_rules! impl_pwm { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::pwm::sealed::Instance for peripherals::$type { fn regs() -> &'static pac::pwm0::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } } impl crate::pwm::Instance for peripherals::$type { type Interrupt = crate::interrupt::$irq; } }; }