//! Pulse Width Modulation (PWM) driver. #![macro_use] use core::sync::atomic::{compiler_fence, Ordering}; use embassy_hal_common::{into_ref, PeripheralRef}; use crate::gpio::sealed::Pin as _; use crate::gpio::{AnyPin, Pin as GpioPin, PselBits}; use crate::ppi::{Event, Task}; use crate::util::slice_in_ram_or; use crate::{interrupt, pac, Peripheral}; /// SimplePwm is the traditional pwm interface you're probably used to, allowing /// to simply set a duty cycle across up to four channels. pub struct SimplePwm<'d, T: Instance> { _peri: PeripheralRef<'d, T>, duty: [u16; 4], ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, } /// SequencePwm allows you to offload the updating of a sequence of duty cycles /// to up to four channels, as well as repeat that sequence n times. pub struct SequencePwm<'d, T: Instance> { _peri: PeripheralRef<'d, T>, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, } /// PWM error #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// Max Sequence size is 32767 SequenceTooLong, /// Min Sequence count is 1 SequenceTimesAtLeastOne, /// EasyDMA can only read from data memory, read only buffers in flash will fail. BufferNotInRAM, } const MAX_SEQUENCE_LEN: usize = 32767; impl<'d, T: Instance> SequencePwm<'d, T> { /// Create a new 1-channel PWM #[allow(unused_unsafe)] pub fn new_1ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0); Self::new_inner(pwm, Some(ch0.map_into()), None, None, None, config) } /// Create a new 2-channel PWM #[allow(unused_unsafe)] pub fn new_2ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1); Self::new_inner(pwm, Some(ch0.map_into()), Some(ch1.map_into()), None, None, config) } /// Create a new 3-channel PWM #[allow(unused_unsafe)] pub fn new_3ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1, ch2); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), None, config, ) } /// Create a new 4-channel PWM #[allow(unused_unsafe)] pub fn new_4ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ch3: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1, ch2, ch3); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), Some(ch3.map_into()), config, ) } fn new_inner( _pwm: impl Peripheral

+ 'd, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, config: Config, ) -> Result { into_ref!(_pwm); let r = T::regs(); if let Some(pin) = &ch0 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch1 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch2 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch3 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } r.psel.out[0].write(|w| unsafe { w.bits(ch0.psel_bits()) }); r.psel.out[1].write(|w| unsafe { w.bits(ch1.psel_bits()) }); r.psel.out[2].write(|w| unsafe { w.bits(ch2.psel_bits()) }); r.psel.out[3].write(|w| unsafe { w.bits(ch3.psel_bits()) }); // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); r.shorts.reset(); r.events_stopped.reset(); r.events_loopsdone.reset(); r.events_seqend[0].reset(); r.events_seqend[1].reset(); r.events_pwmperiodend.reset(); r.events_seqstarted[0].reset(); r.events_seqstarted[1].reset(); r.decoder.write(|w| { w.load().bits(config.sequence_load as u8); w.mode().refresh_count() }); r.mode.write(|w| match config.counter_mode { CounterMode::UpAndDown => w.updown().up_and_down(), CounterMode::Up => w.updown().up(), }); r.prescaler.write(|w| w.prescaler().bits(config.prescaler as u8)); r.countertop.write(|w| unsafe { w.countertop().bits(config.max_duty) }); Ok(Self { _peri: _pwm, ch0, ch1, ch2, ch3, }) } /// Returns reference to `Stopped` event endpoint for PPI. #[inline(always)] pub fn event_stopped(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_stopped) } /// Returns reference to `LoopsDone` event endpoint for PPI. #[inline(always)] pub fn event_loops_done(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_loopsdone) } /// Returns reference to `PwmPeriodEnd` event endpoint for PPI. #[inline(always)] pub fn event_pwm_period_end(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_pwmperiodend) } /// Returns reference to `Seq0 End` event endpoint for PPI. #[inline(always)] pub fn event_seq_end(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_seqend[0]) } /// Returns reference to `Seq1 End` event endpoint for PPI. #[inline(always)] pub fn event_seq1_end(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_seqend[1]) } /// Returns reference to `Seq0 Started` event endpoint for PPI. #[inline(always)] pub fn event_seq0_started(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_seqstarted[0]) } /// Returns reference to `Seq1 Started` event endpoint for PPI. #[inline(always)] pub fn event_seq1_started(&self) -> Event { let r = T::regs(); Event::from_reg(&r.events_seqstarted[1]) } /// Returns reference to `Seq0 Start` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_start_seq0(&self) -> Task { let r = T::regs(); Task::from_reg(&r.tasks_seqstart[0]) } /// Returns reference to `Seq1 Started` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_start_seq1(&self) -> Task { let r = T::regs(); Task::from_reg(&r.tasks_seqstart[1]) } /// Returns reference to `NextStep` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_next_step(&self) -> Task { let r = T::regs(); Task::from_reg(&r.tasks_nextstep) } /// Returns reference to `Stop` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_stop(&self) -> Task { let r = T::regs(); Task::from_reg(&r.tasks_stop) } } impl<'a, T: Instance> Drop for SequencePwm<'a, T> { fn drop(&mut self) { let r = T::regs(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().reset(); r.psel.out[0].reset(); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().reset(); r.psel.out[1].reset(); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().reset(); r.psel.out[2].reset(); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().reset(); r.psel.out[3].reset(); } } } /// Configuration for the PWM as a whole. #[non_exhaustive] pub struct Config { /// Selects up mode or up-and-down mode for the counter pub counter_mode: CounterMode, /// Top value to be compared against buffer values pub max_duty: u16, /// Configuration for PWM_CLK pub prescaler: Prescaler, /// How a sequence is read from RAM and is spread to the compare register pub sequence_load: SequenceLoad, } impl Default for Config { fn default() -> Config { Config { counter_mode: CounterMode::Up, max_duty: 1000, prescaler: Prescaler::Div16, sequence_load: SequenceLoad::Common, } } } /// Configuration per sequence #[non_exhaustive] #[derive(Clone)] pub struct SequenceConfig { /// Number of PWM periods to delay between each sequence sample pub refresh: u32, /// Number of PWM periods after the sequence ends before starting the next sequence pub end_delay: u32, } impl Default for SequenceConfig { fn default() -> SequenceConfig { SequenceConfig { refresh: 0, end_delay: 0, } } } /// A composition of a sequence buffer and its configuration. #[non_exhaustive] pub struct Sequence<'s> { /// The words comprising the sequence. Must not exceed 32767 words. pub words: &'s [u16], /// Configuration associated with the sequence. pub config: SequenceConfig, } impl<'s> Sequence<'s> { /// Create a new `Sequence` pub fn new(words: &'s [u16], config: SequenceConfig) -> Self { Self { words, config } } } /// A single sequence that can be started and stopped. /// Takes at one sequence along with its configuration. #[non_exhaustive] pub struct SingleSequencer<'d, 's, T: Instance> { sequencer: Sequencer<'d, 's, T>, } impl<'d, 's, T: Instance> SingleSequencer<'d, 's, T> { /// Create a new sequencer pub fn new(pwm: &'s mut SequencePwm<'d, T>, words: &'s [u16], config: SequenceConfig) -> Self { Self { sequencer: Sequencer::new(pwm, Sequence::new(words, config), None), } } /// Start or restart playback. #[inline(always)] pub fn start(&self, times: SingleSequenceMode) -> Result<(), Error> { let (start_seq, times) = match times { SingleSequenceMode::Times(n) if n == 1 => (StartSequence::One, SequenceMode::Loop(1)), SingleSequenceMode::Times(n) if n & 1 == 1 => (StartSequence::One, SequenceMode::Loop((n / 2) + 1)), SingleSequenceMode::Times(n) => (StartSequence::Zero, SequenceMode::Loop(n / 2)), SingleSequenceMode::Infinite => (StartSequence::Zero, SequenceMode::Infinite), }; self.sequencer.start(start_seq, times) } /// Stop playback. Disables the peripheral. Does NOT clear the last duty /// cycle from the pin. Returns any sequences previously provided to /// `start` so that they may be further mutated. #[inline(always)] pub fn stop(&self) { self.sequencer.stop(); } } /// A composition of sequences that can be started and stopped. /// Takes at least one sequence along with its configuration. /// Optionally takes a second sequence and its configuration. /// In the case where no second sequence is provided then the first sequence /// is used. #[non_exhaustive] pub struct Sequencer<'d, 's, T: Instance> { _pwm: &'s mut SequencePwm<'d, T>, sequence0: Sequence<'s>, sequence1: Option>, } impl<'d, 's, T: Instance> Sequencer<'d, 's, T> { /// Create a new double sequence. In the absence of sequence 1, sequence 0 /// will be used twice in the one loop. pub fn new(pwm: &'s mut SequencePwm<'d, T>, sequence0: Sequence<'s>, sequence1: Option>) -> Self { Sequencer { _pwm: pwm, sequence0, sequence1, } } /// Start or restart playback. The sequence mode applies to both sequences combined as one. #[inline(always)] pub fn start(&self, start_seq: StartSequence, times: SequenceMode) -> Result<(), Error> { let sequence0 = &self.sequence0; let alt_sequence = self.sequence1.as_ref().unwrap_or(&self.sequence0); slice_in_ram_or(sequence0.words, Error::BufferNotInRAM)?; slice_in_ram_or(alt_sequence.words, Error::BufferNotInRAM)?; if sequence0.words.len() > MAX_SEQUENCE_LEN || alt_sequence.words.len() > MAX_SEQUENCE_LEN { return Err(Error::SequenceTooLong); } if let SequenceMode::Loop(0) = times { return Err(Error::SequenceTimesAtLeastOne); } let _ = self.stop(); let r = T::regs(); r.seq0.refresh.write(|w| unsafe { w.bits(sequence0.config.refresh) }); r.seq0.enddelay.write(|w| unsafe { w.bits(sequence0.config.end_delay) }); r.seq0.ptr.write(|w| unsafe { w.bits(sequence0.words.as_ptr() as u32) }); r.seq0.cnt.write(|w| unsafe { w.bits(sequence0.words.len() as u32) }); r.seq1.refresh.write(|w| unsafe { w.bits(alt_sequence.config.refresh) }); r.seq1 .enddelay .write(|w| unsafe { w.bits(alt_sequence.config.end_delay) }); r.seq1 .ptr .write(|w| unsafe { w.bits(alt_sequence.words.as_ptr() as u32) }); r.seq1.cnt.write(|w| unsafe { w.bits(alt_sequence.words.len() as u32) }); r.enable.write(|w| w.enable().enabled()); // defensive before seqstart compiler_fence(Ordering::SeqCst); let seqstart_index = if start_seq == StartSequence::One { 1 } else { 0 }; match times { // just the one time, no loop count SequenceMode::Loop(n) => { r.loop_.write(|w| unsafe { w.cnt().bits(n) }); } // to play infinitely, repeat the sequence one time, then have loops done self trigger seq0 again SequenceMode::Infinite => { r.loop_.write(|w| unsafe { w.cnt().bits(0x1) }); r.shorts.write(|w| w.loopsdone_seqstart0().enabled()); } } // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[seqstart_index].write(|w| unsafe { w.bits(0x01) }); Ok(()) } /// Stop playback. Disables the peripheral. Does NOT clear the last duty /// cycle from the pin. Returns any sequences previously provided to /// `start` so that they may be further mutated. #[inline(always)] pub fn stop(&self) { let r = T::regs(); r.shorts.reset(); compiler_fence(Ordering::SeqCst); // tasks_stop() doesn't exist in all svds so write its bit instead r.tasks_stop.write(|w| unsafe { w.bits(0x01) }); r.enable.write(|w| w.enable().disabled()); } } impl<'d, 's, T: Instance> Drop for Sequencer<'d, 's, T> { fn drop(&mut self) { let _ = self.stop(); } } /// How many times to run a single sequence #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SingleSequenceMode { /// Run a single sequence n Times total. Times(u16), /// Repeat until `stop` is called. Infinite, } /// Which sequence to start a loop with #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum StartSequence { /// Start with Sequence 0 Zero, /// Start with Sequence 1 One, } /// How many loops to run two sequences #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceMode { /// Run two sequences n loops i.e. (n * (seq0 + seq1.unwrap_or(seq0))) Loop(u16), /// Repeat until `stop` is called. Infinite, } /// PWM Base clock is system clock (16MHz) divided by prescaler #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum Prescaler { /// Divide by 1 Div1, /// Divide by 2 Div2, /// Divide by 4 Div4, /// Divide by 8 Div8, /// Divide by 16 Div16, /// Divide by 32 Div32, /// Divide by 64 Div64, /// Divide by 128 Div128, } /// How the sequence values are distributed across the channels #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceLoad { /// Provided sequence will be used across all channels Common, /// Provided sequence contains grouped values for each channel ex: /// [ch0_0_and_ch1_0, ch2_0_and_ch3_0, ... ch0_n_and_ch1_n, ch2_n_and_ch3_n] Grouped, /// Provided sequence contains individual values for each channel ex: /// [ch0_0, ch1_0, ch2_0, ch3_0... ch0_n, ch1_n, ch2_n, ch3_n] Individual, /// Similar to Individual mode, but only three channels are used. The fourth /// value is loaded into the pulse generator counter as its top value. Waveform, } /// Selects up mode or up-and-down mode for the counter #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum CounterMode { /// Up counter (edge-aligned PWM duty cycle) Up, /// Up and down counter (center-aligned PWM duty cycle) UpAndDown, } impl<'d, T: Instance> SimplePwm<'d, T> { /// Create a new 1-channel PWM #[allow(unused_unsafe)] pub fn new_1ch(pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd) -> Self { unsafe { into_ref!(ch0); Self::new_inner(pwm, Some(ch0.map_into()), None, None, None) } } /// Create a new 2-channel PWM #[allow(unused_unsafe)] pub fn new_2ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ) -> Self { into_ref!(ch0, ch1); Self::new_inner(pwm, Some(ch0.map_into()), Some(ch1.map_into()), None, None) } /// Create a new 3-channel PWM #[allow(unused_unsafe)] pub fn new_3ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ) -> Self { unsafe { into_ref!(ch0, ch1, ch2); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), None, ) } } /// Create a new 4-channel PWM #[allow(unused_unsafe)] pub fn new_4ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ch3: impl Peripheral

+ 'd, ) -> Self { unsafe { into_ref!(ch0, ch1, ch2, ch3); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), Some(ch3.map_into()), ) } } fn new_inner( _pwm: impl Peripheral

+ 'd, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, ) -> Self { into_ref!(_pwm); let r = T::regs(); if let Some(pin) = &ch0 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch1 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch2 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } if let Some(pin) = &ch3 { pin.set_low(); pin.conf().write(|w| w.dir().output()); } // if NoPin provided writes disconnected (top bit 1) 0x80000000 else // writes pin number ex 13 (0x0D) which is connected (top bit 0) r.psel.out[0].write(|w| unsafe { w.bits(ch0.psel_bits()) }); r.psel.out[1].write(|w| unsafe { w.bits(ch1.psel_bits()) }); r.psel.out[2].write(|w| unsafe { w.bits(ch2.psel_bits()) }); r.psel.out[3].write(|w| unsafe { w.bits(ch3.psel_bits()) }); let pwm = Self { _peri: _pwm, ch0, ch1, ch2, ch3, duty: [0; 4], }; // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); r.shorts.reset(); // Enable r.enable.write(|w| w.enable().enabled()); r.seq0.ptr.write(|w| unsafe { w.bits((&pwm.duty).as_ptr() as u32) }); r.seq0.cnt.write(|w| unsafe { w.bits(4) }); r.seq0.refresh.write(|w| unsafe { w.bits(0) }); r.seq0.enddelay.write(|w| unsafe { w.bits(0) }); r.decoder.write(|w| { w.load().individual(); w.mode().refresh_count() }); r.mode.write(|w| w.updown().up()); r.prescaler.write(|w| w.prescaler().div_16()); r.countertop.write(|w| unsafe { w.countertop().bits(1000) }); r.loop_.write(|w| w.cnt().disabled()); pwm } /// Enables the PWM generator. #[inline(always)] pub fn enable(&self) { let r = T::regs(); r.enable.write(|w| w.enable().enabled()); } /// Disables the PWM generator. Does NOT clear the last duty cycle from the pin. #[inline(always)] pub fn disable(&self) { let r = T::regs(); r.enable.write(|w| w.enable().disabled()); } /// Sets duty cycle (15 bit) for a PWM channel. pub fn set_duty(&mut self, channel: usize, duty: u16) { let r = T::regs(); self.duty[channel] = duty & 0x7FFF; // reload ptr in case self was moved r.seq0.ptr.write(|w| unsafe { w.bits((&self.duty).as_ptr() as u32) }); // defensive before seqstart compiler_fence(Ordering::SeqCst); r.events_seqend[0].reset(); // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart[0].write(|w| unsafe { w.bits(1) }); // defensive wait until waveform is loaded after seqstart so set_duty // can't be called again while dma is still reading while r.events_seqend[0].read().bits() == 0 {} } /// Sets the PWM clock prescaler. #[inline(always)] pub fn set_prescaler(&self, div: Prescaler) { T::regs().prescaler.write(|w| w.prescaler().bits(div as u8)); } /// Gets the PWM clock prescaler. #[inline(always)] pub fn prescaler(&self) -> Prescaler { match T::regs().prescaler.read().prescaler().bits() { 0 => Prescaler::Div1, 1 => Prescaler::Div2, 2 => Prescaler::Div4, 3 => Prescaler::Div8, 4 => Prescaler::Div16, 5 => Prescaler::Div32, 6 => Prescaler::Div64, 7 => Prescaler::Div128, _ => unreachable!(), } } /// Sets the maximum duty cycle value. #[inline(always)] pub fn set_max_duty(&self, duty: u16) { T::regs() .countertop .write(|w| unsafe { w.countertop().bits(duty.min(32767u16)) }); } /// Returns the maximum duty cycle value. #[inline(always)] pub fn max_duty(&self) -> u16 { T::regs().countertop.read().countertop().bits() } /// Sets the PWM output frequency. #[inline(always)] pub fn set_period(&self, freq: u32) { let clk = 16_000_000u32 >> (self.prescaler() as u8); let duty = clk / freq; self.set_max_duty(duty.min(32767) as u16); } /// Returns the PWM output frequency. #[inline(always)] pub fn period(&self) -> u32 { let clk = 16_000_000u32 >> (self.prescaler() as u8); let max_duty = self.max_duty() as u32; clk / max_duty } } impl<'a, T: Instance> Drop for SimplePwm<'a, T> { fn drop(&mut self) { let r = T::regs(); self.disable(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().reset(); r.psel.out[0].reset(); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().reset(); r.psel.out[1].reset(); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().reset(); r.psel.out[2].reset(); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().reset(); r.psel.out[3].reset(); } } } pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> &'static pac::pwm0::RegisterBlock; } } /// PWM peripheral instance. pub trait Instance: Peripheral

+ sealed::Instance + 'static { /// Interrupt for this peripheral. type Interrupt: interrupt::typelevel::Interrupt; } macro_rules! impl_pwm { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::pwm::sealed::Instance for peripherals::$type { fn regs() -> &'static pac::pwm0::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } } impl crate::pwm::Instance for peripherals::$type { type Interrupt = crate::interrupt::typelevel::$irq; } }; }