//! TCP sockets. //! //! # Listening //! //! `embassy-net` does not have a `TcpListener`. Instead, individual `TcpSocket`s can be put into //! listening mode by calling [`TcpSocket::accept`]. //! //! Incoming connections when no socket is listening are rejected. To accept many incoming //! connections, create many sockets and put them all into listening mode. use core::cell::RefCell; use core::future::poll_fn; use core::mem; use core::task::Poll; use embassy_net_driver::Driver; use embassy_time::Duration; use smoltcp::iface::{Interface, SocketHandle}; use smoltcp::socket::tcp; pub use smoltcp::socket::tcp::State; use smoltcp::wire::{IpEndpoint, IpListenEndpoint}; use crate::time::duration_to_smoltcp; use crate::{SocketStack, Stack}; /// Error returned by TcpSocket read/write functions. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { /// The connection was reset. /// /// This can happen on receiving a RST packet, or on timeout. ConnectionReset, } /// Error returned by [`TcpSocket::connect`]. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum ConnectError { /// The socket is already connected or listening. InvalidState, /// The remote host rejected the connection with a RST packet. ConnectionReset, /// Connect timed out. TimedOut, /// No route to host. NoRoute, } /// Error returned by [`TcpSocket::accept`]. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum AcceptError { /// The socket is already connected or listening. InvalidState, /// Invalid listen port InvalidPort, /// The remote host rejected the connection with a RST packet. ConnectionReset, } /// A TCP socket. pub struct TcpSocket<'a> { io: TcpIo<'a>, } /// The reader half of a TCP socket. pub struct TcpReader<'a> { io: TcpIo<'a>, } /// The writer half of a TCP socket. pub struct TcpWriter<'a> { io: TcpIo<'a>, } impl<'a> TcpReader<'a> { /// Read data from the socket. /// /// Returns how many bytes were read, or an error. If no data is available, it waits /// until there is at least one byte available. pub async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } /// Call `f` with the largest contiguous slice of octets in the receive buffer, /// and dequeue the amount of elements returned by `f`. /// /// If no data is available, it waits until there is at least one byte available. pub async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.read_with(f).await } /// Return the maximum number of bytes inside the transmit buffer. pub fn recv_capacity(&self) -> usize { self.io.recv_capacity() } } impl<'a> TcpWriter<'a> { /// Write data to the socket. /// /// Returns how many bytes were written, or an error. If the socket is not ready to /// accept data, it waits until it is. pub async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } /// Flushes the written data to the socket. /// /// This waits until all data has been sent, and ACKed by the remote host. For a connection /// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent. pub async fn flush(&mut self) -> Result<(), Error> { self.io.flush().await } /// Call `f` with the largest contiguous slice of octets in the transmit buffer, /// and enqueue the amount of elements returned by `f`. /// /// If the socket is not ready to accept data, it waits until it is. pub async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.write_with(f).await } /// Return the maximum number of bytes inside the transmit buffer. pub fn send_capacity(&self) -> usize { self.io.send_capacity() } } impl<'a> TcpSocket<'a> { /// Create a new TCP socket on the given stack, with the given buffers. pub fn new(stack: &'a Stack, rx_buffer: &'a mut [u8], tx_buffer: &'a mut [u8]) -> Self { let s = &mut *stack.socket.borrow_mut(); let rx_buffer: &'static mut [u8] = unsafe { mem::transmute(rx_buffer) }; let tx_buffer: &'static mut [u8] = unsafe { mem::transmute(tx_buffer) }; let handle = s.sockets.add(tcp::Socket::new( tcp::SocketBuffer::new(rx_buffer), tcp::SocketBuffer::new(tx_buffer), )); Self { io: TcpIo { stack: &stack.socket, handle, }, } } /// Return the maximum number of bytes inside the recv buffer. pub fn recv_capacity(&self) -> usize { self.io.recv_capacity() } /// Return the maximum number of bytes inside the transmit buffer. pub fn send_capacity(&self) -> usize { self.io.send_capacity() } /// Call `f` with the largest contiguous slice of octets in the transmit buffer, /// and enqueue the amount of elements returned by `f`. /// /// If the socket is not ready to accept data, it waits until it is. pub async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.write_with(f).await } /// Call `f` with the largest contiguous slice of octets in the receive buffer, /// and dequeue the amount of elements returned by `f`. /// /// If no data is available, it waits until there is at least one byte available. pub async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.read_with(f).await } /// Split the socket into reader and a writer halves. pub fn split(&mut self) -> (TcpReader<'_>, TcpWriter<'_>) { (TcpReader { io: self.io }, TcpWriter { io: self.io }) } /// Connect to a remote host. pub async fn connect(&mut self, remote_endpoint: T) -> Result<(), ConnectError> where T: Into, { let local_port = self.io.stack.borrow_mut().get_local_port(); match { self.io .with_mut(|s, i| s.connect(i.context(), remote_endpoint, local_port)) } { Ok(()) => {} Err(tcp::ConnectError::InvalidState) => return Err(ConnectError::InvalidState), Err(tcp::ConnectError::Unaddressable) => return Err(ConnectError::NoRoute), } poll_fn(|cx| { self.io.with_mut(|s, _| match s.state() { tcp::State::Closed | tcp::State::TimeWait => Poll::Ready(Err(ConnectError::ConnectionReset)), tcp::State::Listen => unreachable!(), tcp::State::SynSent | tcp::State::SynReceived => { s.register_send_waker(cx.waker()); Poll::Pending } _ => Poll::Ready(Ok(())), }) }) .await } /// Accept a connection from a remote host. /// /// This function puts the socket in listening mode, and waits until a connection is received. pub async fn accept(&mut self, local_endpoint: T) -> Result<(), AcceptError> where T: Into, { match self.io.with_mut(|s, _| s.listen(local_endpoint)) { Ok(()) => {} Err(tcp::ListenError::InvalidState) => return Err(AcceptError::InvalidState), Err(tcp::ListenError::Unaddressable) => return Err(AcceptError::InvalidPort), } poll_fn(|cx| { self.io.with_mut(|s, _| match s.state() { tcp::State::Listen | tcp::State::SynSent | tcp::State::SynReceived => { s.register_send_waker(cx.waker()); Poll::Pending } _ => Poll::Ready(Ok(())), }) }) .await } /// Read data from the socket. /// /// Returns how many bytes were read, or an error. If no data is available, it waits /// until there is at least one byte available. pub async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } /// Write data to the socket. /// /// Returns how many bytes were written, or an error. If the socket is not ready to /// accept data, it waits until it is. pub async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } /// Flushes the written data to the socket. /// /// This waits until all data has been sent, and ACKed by the remote host. For a connection /// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent. pub async fn flush(&mut self) -> Result<(), Error> { self.io.flush().await } /// Set the timeout for the socket. /// /// If the timeout is set, the socket will be closed if no data is received for the /// specified duration. pub fn set_timeout(&mut self, duration: Option) { self.io .with_mut(|s, _| s.set_timeout(duration.map(duration_to_smoltcp))) } /// Set the keep-alive interval for the socket. /// /// If the keep-alive interval is set, the socket will send keep-alive packets after /// the specified duration of inactivity. /// /// If not set, the socket will not send keep-alive packets. pub fn set_keep_alive(&mut self, interval: Option) { self.io .with_mut(|s, _| s.set_keep_alive(interval.map(duration_to_smoltcp))) } /// Set the hop limit field in the IP header of sent packets. pub fn set_hop_limit(&mut self, hop_limit: Option) { self.io.with_mut(|s, _| s.set_hop_limit(hop_limit)) } /// Get the local endpoint of the socket. /// /// Returns `None` if the socket is not bound (listening) or not connected. pub fn local_endpoint(&self) -> Option { self.io.with(|s, _| s.local_endpoint()) } /// Get the remote endpoint of the socket. /// /// Returns `None` if the socket is not connected. pub fn remote_endpoint(&self) -> Option { self.io.with(|s, _| s.remote_endpoint()) } /// Get the state of the socket. pub fn state(&self) -> State { self.io.with(|s, _| s.state()) } /// Close the write half of the socket. /// /// This closes only the write half of the socket. The read half side remains open, the /// socket can still receive data. /// /// Data that has been written to the socket and not yet sent (or not yet ACKed) will still /// still sent. The last segment of the pending to send data is sent with the FIN flag set. pub fn close(&mut self) { self.io.with_mut(|s, _| s.close()) } /// Forcibly close the socket. /// /// This instantly closes both the read and write halves of the socket. Any pending data /// that has not been sent will be lost. /// /// Note that the TCP RST packet is not sent immediately - if the `TcpSocket` is dropped too soon /// the remote host may not know the connection has been closed. /// `abort()` callers should wait for a [`flush()`](TcpSocket::flush) call to complete before /// dropping or reusing the socket. pub fn abort(&mut self) { self.io.with_mut(|s, _| s.abort()) } /// Get whether the socket is ready to send data, i.e. whether there is space in the send buffer. pub fn may_send(&self) -> bool { self.io.with(|s, _| s.may_send()) } /// return whether the recieve half of the full-duplex connection is open. /// This function returns true if it’s possible to receive data from the remote endpoint. /// It will return true while there is data in the receive buffer, and if there isn’t, /// as long as the remote endpoint has not closed the connection. pub fn may_recv(&self) -> bool { self.io.with(|s, _| s.may_recv()) } /// Get whether the socket is ready to receive data, i.e. whether there is some pending data in the receive buffer. pub fn can_recv(&self) -> bool { self.io.with(|s, _| s.can_recv()) } } impl<'a> Drop for TcpSocket<'a> { fn drop(&mut self) { self.io.stack.borrow_mut().sockets.remove(self.io.handle); } } // ======================= #[derive(Copy, Clone)] struct TcpIo<'a> { stack: &'a RefCell, handle: SocketHandle, } impl<'d> TcpIo<'d> { fn with(&self, f: impl FnOnce(&tcp::Socket, &Interface) -> R) -> R { let s = &*self.stack.borrow(); let socket = s.sockets.get::(self.handle); f(socket, &s.iface) } fn with_mut(&mut self, f: impl FnOnce(&mut tcp::Socket, &mut Interface) -> R) -> R { let s = &mut *self.stack.borrow_mut(); let socket = s.sockets.get_mut::(self.handle); let res = f(socket, &mut s.iface); s.waker.wake(); res } async fn read(&mut self, buf: &mut [u8]) -> Result { poll_fn(move |cx| { // CAUTION: smoltcp semantics around EOF are different to what you'd expect // from posix-like IO, so we have to tweak things here. self.with_mut(|s, _| match s.recv_slice(buf) { // No data ready Ok(0) => { s.register_recv_waker(cx.waker()); Poll::Pending } // Data ready! Ok(n) => Poll::Ready(Ok(n)), // EOF Err(tcp::RecvError::Finished) => Poll::Ready(Ok(0)), // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::RecvError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)), }) }) .await } async fn write(&mut self, buf: &[u8]) -> Result { poll_fn(move |cx| { self.with_mut(|s, _| match s.send_slice(buf) { // Not ready to send (no space in the tx buffer) Ok(0) => { s.register_send_waker(cx.waker()); Poll::Pending } // Some data sent Ok(n) => Poll::Ready(Ok(n)), // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::SendError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)), }) }) .await } async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { let mut f = Some(f); poll_fn(move |cx| { self.with_mut(|s, _| { if !s.can_send() { if s.may_send() { // socket buffer is full wait until it has atleast one byte free s.register_send_waker(cx.waker()); Poll::Pending } else { // if we can't transmit because the transmit half of the duplex connection is closed then return an error Poll::Ready(Err(Error::ConnectionReset)) } } else { Poll::Ready(match s.send(unwrap!(f.take())) { // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::SendError::InvalidState) => Err(Error::ConnectionReset), Ok(r) => Ok(r), }) } }) }) .await } async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { let mut f = Some(f); poll_fn(move |cx| { self.with_mut(|s, _| { if !s.can_recv() { if s.may_recv() { // socket buffer is empty wait until it has atleast one byte has arrived s.register_recv_waker(cx.waker()); Poll::Pending } else { // if we can't receive because the recieve half of the duplex connection is closed then return an error Poll::Ready(Err(Error::ConnectionReset)) } } else { Poll::Ready(match s.recv(unwrap!(f.take())) { // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::RecvError::Finished) | Err(tcp::RecvError::InvalidState) => { Err(Error::ConnectionReset) } Ok(r) => Ok(r), }) } }) }) .await } async fn flush(&mut self) -> Result<(), Error> { poll_fn(move |cx| { self.with_mut(|s, _| { let waiting_close = s.state() == tcp::State::Closed && s.remote_endpoint().is_some(); // If there are outstanding send operations, register for wake up and wait // smoltcp issues wake-ups when octets are dequeued from the send buffer if s.send_queue() > 0 || waiting_close { s.register_send_waker(cx.waker()); Poll::Pending // No outstanding sends, socket is flushed } else { Poll::Ready(Ok(())) } }) }) .await } fn recv_capacity(&self) -> usize { self.with(|s, _| s.recv_capacity()) } fn send_capacity(&self) -> usize { self.with(|s, _| s.send_capacity()) } } #[cfg(feature = "nightly")] mod embedded_io_impls { use super::*; impl embedded_io_async::Error for ConnectError { fn kind(&self) -> embedded_io_async::ErrorKind { match self { ConnectError::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset, ConnectError::TimedOut => embedded_io_async::ErrorKind::TimedOut, ConnectError::NoRoute => embedded_io_async::ErrorKind::NotConnected, ConnectError::InvalidState => embedded_io_async::ErrorKind::Other, } } } impl embedded_io_async::Error for Error { fn kind(&self) -> embedded_io_async::ErrorKind { match self { Error::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset, } } } impl<'d> embedded_io_async::ErrorType for TcpSocket<'d> { type Error = Error; } impl<'d> embedded_io_async::Read for TcpSocket<'d> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } } impl<'d> embedded_io_async::Write for TcpSocket<'d> { async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.io.flush().await } } impl<'d> embedded_io_async::ErrorType for TcpReader<'d> { type Error = Error; } impl<'d> embedded_io_async::Read for TcpReader<'d> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } } impl<'d> embedded_io_async::ErrorType for TcpWriter<'d> { type Error = Error; } impl<'d> embedded_io_async::Write for TcpWriter<'d> { async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.io.flush().await } } } /// TCP client compatible with `embedded-nal-async` traits. #[cfg(feature = "nightly")] pub mod client { use core::cell::UnsafeCell; use core::mem::MaybeUninit; use core::ptr::NonNull; use atomic_polyfill::{AtomicBool, Ordering}; use embedded_nal_async::IpAddr; use super::*; /// TCP client connection pool compatible with `embedded-nal-async` traits. /// /// The pool is capable of managing up to N concurrent connections with tx and rx buffers according to TX_SZ and RX_SZ. pub struct TcpClient<'d, D: Driver, const N: usize, const TX_SZ: usize = 1024, const RX_SZ: usize = 1024> { stack: &'d Stack, state: &'d TcpClientState, } impl<'d, D: Driver, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClient<'d, D, N, TX_SZ, RX_SZ> { /// Create a new `TcpClient`. pub fn new(stack: &'d Stack, state: &'d TcpClientState) -> Self { Self { stack, state } } } impl<'d, D: Driver, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_nal_async::TcpConnect for TcpClient<'d, D, N, TX_SZ, RX_SZ> { type Error = Error; type Connection<'m> = TcpConnection<'m, N, TX_SZ, RX_SZ> where Self: 'm; async fn connect<'a>( &'a self, remote: embedded_nal_async::SocketAddr, ) -> Result, Self::Error> where Self: 'a, { let addr: crate::IpAddress = match remote.ip() { #[cfg(feature = "proto-ipv4")] IpAddr::V4(addr) => crate::IpAddress::Ipv4(crate::Ipv4Address::from_bytes(&addr.octets())), #[cfg(not(feature = "proto-ipv4"))] IpAddr::V4(_) => panic!("ipv4 support not enabled"), #[cfg(feature = "proto-ipv6")] IpAddr::V6(addr) => crate::IpAddress::Ipv6(crate::Ipv6Address::from_bytes(&addr.octets())), #[cfg(not(feature = "proto-ipv6"))] IpAddr::V6(_) => panic!("ipv6 support not enabled"), }; let remote_endpoint = (addr, remote.port()); let mut socket = TcpConnection::new(&self.stack, self.state)?; socket .socket .connect(remote_endpoint) .await .map_err(|_| Error::ConnectionReset)?; Ok(socket) } } /// Opened TCP connection in a [`TcpClient`]. pub struct TcpConnection<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> { socket: TcpSocket<'d>, state: &'d TcpClientState, bufs: NonNull<([u8; TX_SZ], [u8; RX_SZ])>, } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpConnection<'d, N, TX_SZ, RX_SZ> { fn new(stack: &'d Stack, state: &'d TcpClientState) -> Result { let mut bufs = state.pool.alloc().ok_or(Error::ConnectionReset)?; Ok(Self { socket: unsafe { TcpSocket::new(stack, &mut bufs.as_mut().1, &mut bufs.as_mut().0) }, state, bufs, }) } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> Drop for TcpConnection<'d, N, TX_SZ, RX_SZ> { fn drop(&mut self) { unsafe { self.socket.close(); self.state.pool.free(self.bufs); } } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::ErrorType for TcpConnection<'d, N, TX_SZ, RX_SZ> { type Error = Error; } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Read for TcpConnection<'d, N, TX_SZ, RX_SZ> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.socket.read(buf).await } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Write for TcpConnection<'d, N, TX_SZ, RX_SZ> { async fn write(&mut self, buf: &[u8]) -> Result { self.socket.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.socket.flush().await } } /// State for TcpClient pub struct TcpClientState { pool: Pool<([u8; TX_SZ], [u8; RX_SZ]), N>, } impl TcpClientState { /// Create a new `TcpClientState`. pub const fn new() -> Self { Self { pool: Pool::new() } } } unsafe impl Sync for TcpClientState {} struct Pool { used: [AtomicBool; N], data: [UnsafeCell>; N], } impl Pool { const VALUE: AtomicBool = AtomicBool::new(false); const UNINIT: UnsafeCell> = UnsafeCell::new(MaybeUninit::uninit()); const fn new() -> Self { Self { used: [Self::VALUE; N], data: [Self::UNINIT; N], } } } impl Pool { fn alloc(&self) -> Option> { for n in 0..N { if self.used[n].swap(true, Ordering::SeqCst) == false { let p = self.data[n].get() as *mut T; return Some(unsafe { NonNull::new_unchecked(p) }); } } None } /// safety: p must be a pointer obtained from self.alloc that hasn't been freed yet. unsafe fn free(&self, p: NonNull) { let origin = self.data.as_ptr() as *mut T; let n = p.as_ptr().offset_from(origin); assert!(n >= 0); assert!((n as usize) < N); self.used[n as usize].store(false, Ordering::SeqCst); } } }