//! Asynchronous shared SPI bus //! //! # Example (nrf52) //! //! ```rust //! use embassy_embedded_hal::shared_bus::spi::SpiDevice; //! use embassy::mutex::Mutex; //! use embassy::blocking_mutex::raw::ThreadModeRawMutex; //! //! static SPI_BUS: Forever>> = Forever::new(); //! let mut config = spim::Config::default(); //! config.frequency = spim::Frequency::M32; //! let irq = interrupt::take!(SPIM3); //! let spi = spim::Spim::new_txonly(p.SPI3, irq, p.P0_15, p.P0_18, config); //! let spi_bus = Mutex::::new(spi); //! let spi_bus = SPI_BUS.put(spi_bus); //! //! // Device 1, using embedded-hal-async compatible driver for ST7735 LCD display //! let cs_pin1 = Output::new(p.P0_24, Level::Low, OutputDrive::Standard); //! let spi_dev1 = SpiDevice::new(spi_bus, cs_pin1); //! let display1 = ST7735::new(spi_dev1, dc1, rst1, Default::default(), 160, 128); //! //! // Device 2 //! let cs_pin2 = Output::new(p.P0_24, Level::Low, OutputDrive::Standard); //! let spi_dev2 = SpiDevice::new(spi_bus, cs_pin2); //! let display2 = ST7735::new(spi_dev2, dc2, rst2, Default::default(), 160, 128); //! ``` use core::future::Future; use embassy::blocking_mutex::raw::RawMutex; use embassy::mutex::Mutex; use embedded_hal_1::digital::blocking::OutputPin; use embedded_hal_1::spi::ErrorType; use embedded_hal_async::spi; use crate::shared_bus::SpiDeviceError; use crate::SetConfig; /// SPI device on a shared bus. pub struct SpiDevice<'a, M: RawMutex, BUS, CS> { bus: &'a Mutex, cs: CS, } impl<'a, M: RawMutex, BUS, CS> SpiDevice<'a, M, BUS, CS> { /// Create a new `SpiDevice`. pub fn new(bus: &'a Mutex, cs: CS) -> Self { Self { bus, cs } } } impl<'a, M: RawMutex, BUS, CS> spi::ErrorType for SpiDevice<'a, M, BUS, CS> where BUS: spi::ErrorType, CS: OutputPin, { type Error = SpiDeviceError; } impl spi::SpiDevice for SpiDevice<'_, M, BUS, CS> where M: RawMutex + 'static, BUS: spi::SpiBusFlush + 'static, CS: OutputPin, { type Bus = BUS; type TransactionFuture<'a, R, F, Fut> = impl Future> + 'a where Self: 'a, R: 'a, F: FnOnce(*mut Self::Bus) -> Fut + 'a, Fut: Future::Error>> + 'a; fn transaction<'a, R, F, Fut>(&'a mut self, f: F) -> Self::TransactionFuture<'a, R, F, Fut> where R: 'a, F: FnOnce(*mut Self::Bus) -> Fut + 'a, Fut: Future::Error>> + 'a, { async move { let mut bus = self.bus.lock().await; self.cs.set_low().map_err(SpiDeviceError::Cs)?; let f_res = f(&mut *bus).await; // On failure, it's important to still flush and deassert CS. let flush_res = bus.flush().await; let cs_res = self.cs.set_high(); let f_res = f_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?; cs_res.map_err(SpiDeviceError::Cs)?; Ok(f_res) } } } /// SPI device on a shared bus, with its own configuration. /// /// This is like [`SpiDevice`], with an additional bus configuration that's applied /// to the bus before each use using [`SetConfig`]. This allows different /// devices on the same bus to use different communication settings. pub struct SpiDeviceWithConfig<'a, M: RawMutex, BUS: SetConfig, CS> { bus: &'a Mutex, cs: CS, config: BUS::Config, } impl<'a, M: RawMutex, BUS: SetConfig, CS> SpiDeviceWithConfig<'a, M, BUS, CS> { /// Create a new `SpiDeviceWithConfig`. pub fn new(bus: &'a Mutex, cs: CS, config: BUS::Config) -> Self { Self { bus, cs, config } } } impl<'a, M, BUS, CS> spi::ErrorType for SpiDeviceWithConfig<'a, M, BUS, CS> where BUS: spi::ErrorType + SetConfig, CS: OutputPin, M: RawMutex, { type Error = SpiDeviceError; } impl spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS> where M: RawMutex + 'static, BUS: spi::SpiBusFlush + SetConfig + 'static, CS: OutputPin, { type Bus = BUS; type TransactionFuture<'a, R, F, Fut> = impl Future> + 'a where Self: 'a, R: 'a, F: FnOnce(*mut Self::Bus) -> Fut + 'a, Fut: Future::Error>> + 'a; fn transaction<'a, R, F, Fut>(&'a mut self, f: F) -> Self::TransactionFuture<'a, R, F, Fut> where R: 'a, F: FnOnce(*mut Self::Bus) -> Fut + 'a, Fut: Future::Error>> + 'a, { async move { let mut bus = self.bus.lock().await; bus.set_config(&self.config); self.cs.set_low().map_err(SpiDeviceError::Cs)?; let f_res = f(&mut *bus).await; // On failure, it's important to still flush and deassert CS. let flush_res = bus.flush().await; let cs_res = self.cs.set_high(); let f_res = f_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?; cs_res.map_err(SpiDeviceError::Cs)?; Ok(f_res) } } }