#![macro_use] use core::future::poll_fn; use core::marker::PhantomData; use core::task::Poll; use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; use rand_core::{CryptoRng, RngCore}; use crate::interrupt::typelevel::Interrupt; use crate::{interrupt, pac, peripherals, Peripheral}; static RNG_WAKER: AtomicWaker = AtomicWaker::new(); #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { SeedError, ClockError, } pub struct InterruptHandler { _phantom: PhantomData, } impl interrupt::typelevel::Handler for InterruptHandler { unsafe fn on_interrupt() { let bits = T::regs().sr().read(); if bits.drdy() || bits.seis() || bits.ceis() { T::regs().cr().modify(|reg| reg.set_ie(false)); RNG_WAKER.wake(); } } } pub struct Rng<'d, T: Instance> { _inner: PeripheralRef<'d, T>, } impl<'d, T: Instance> Rng<'d, T> { pub fn new( inner: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding> + 'd, ) -> Self { T::enable(); T::reset(); into_ref!(inner); let mut random = Self { _inner: inner }; random.reset(); T::Interrupt::unpend(); unsafe { T::Interrupt::enable() }; random } #[cfg(rng_v1)] pub fn reset(&mut self) { T::regs().cr().write(|reg| { reg.set_rngen(false); }); T::regs().sr().modify(|reg| { reg.set_seis(false); reg.set_ceis(false); }); T::regs().cr().modify(|reg| { reg.set_rngen(true); }); // Reference manual says to discard the first. let _ = self.next_u32(); } #[cfg(not(rng_v1))] pub fn reset(&mut self) { T::regs().cr().write(|reg| { reg.set_condrst(true); reg.set_nistc(pac::rng::vals::Nistc::CUSTOM); // set RNG config "A" according to reference manual // this has to be written within the same write access as setting the CONDRST bit reg.set_rng_config1(pac::rng::vals::RngConfig1::CONFIGA); reg.set_clkdiv(pac::rng::vals::Clkdiv::NODIV); reg.set_rng_config2(pac::rng::vals::RngConfig2::CONFIGA_B); reg.set_rng_config3(pac::rng::vals::RngConfig3::CONFIGA); reg.set_ced(true); reg.set_ie(false); reg.set_rngen(true); }); T::regs().cr().write(|reg| { reg.set_ced(false); }); // wait for CONDRST to be set while !T::regs().cr().read().condrst() {} // magic number must be written immediately before every read or write access to HTCR T::regs().htcr().write(|w| w.set_htcfg(pac::rng::vals::Htcfg::MAGIC)); // write recommended value according to reference manual // note: HTCR can only be written during conditioning T::regs() .htcr() .write(|w| w.set_htcfg(pac::rng::vals::Htcfg::RECOMMENDED)); // finish conditioning T::regs().cr().modify(|reg| { reg.set_rngen(true); reg.set_condrst(false); }); // wait for CONDRST to be reset while T::regs().cr().read().condrst() {} } pub fn recover_seed_error(&mut self) -> () { self.reset(); // reset should also clear the SEIS flag if T::regs().sr().read().seis() { warn!("recovering from seed error failed"); return; } // wait for SECS to be cleared by RNG while T::regs().sr().read().secs() {} } pub async fn async_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { for chunk in dest.chunks_mut(4) { let bits = T::regs().sr().read(); if bits.seis() { // in case of noise-source or seed error we try to recover here // but we must not use the data in DR and we return an error // to leave retry-logic to the application self.recover_seed_error(); return Err(Error::SeedError); } else if bits.ceis() { // clock error detected, DR could still be used but keep it safe, // clear the error and abort T::regs().sr().modify(|sr| sr.set_ceis(false)); return Err(Error::ClockError); } else if bits.drdy() { // DR can be read up to four times until the output buffer is empty // DRDY is cleared automatically when that happens let random_word = T::regs().dr().read(); // reference manual: always check if DR is zero if random_word == 0 { return Err(Error::SeedError); } // write bytes to chunk for (dest, src) in chunk.iter_mut().zip(random_word.to_be_bytes().iter()) { *dest = *src } } else { // wait for interrupt poll_fn(|cx| { // quick check to avoid registration if already done. let bits = T::regs().sr().read(); if bits.drdy() || bits.seis() || bits.ceis() { return Poll::Ready(()); } RNG_WAKER.register(cx.waker()); T::regs().cr().modify(|reg| reg.set_ie(true)); // Need to check condition **after** `register` to avoid a race // condition that would result in lost notifications. let bits = T::regs().sr().read(); if bits.drdy() || bits.seis() || bits.ceis() { Poll::Ready(()) } else { Poll::Pending } }) .await; } } Ok(()) } } impl<'d, T: Instance> RngCore for Rng<'d, T> { fn next_u32(&mut self) -> u32 { loop { let sr = T::regs().sr().read(); if sr.seis() | sr.ceis() { self.reset(); } else if sr.drdy() { return T::regs().dr().read(); } } } fn next_u64(&mut self) -> u64 { let mut rand = self.next_u32() as u64; rand |= (self.next_u32() as u64) << 32; rand } fn fill_bytes(&mut self, dest: &mut [u8]) { for chunk in dest.chunks_mut(4) { let rand = self.next_u32(); for (slot, num) in chunk.iter_mut().zip(rand.to_be_bytes().iter()) { *slot = *num } } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.fill_bytes(dest); Ok(()) } } impl<'d, T: Instance> CryptoRng for Rng<'d, T> {} pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> pac::rng::Rng; } } pub trait Instance: sealed::Instance + Peripheral

+ crate::rcc::RccPeripheral + 'static + Send { type Interrupt: interrupt::typelevel::Interrupt; } foreach_interrupt!( ($inst:ident, rng, RNG, GLOBAL, $irq:ident) => { impl Instance for peripherals::$inst { type Interrupt = crate::interrupt::typelevel::$irq; } impl sealed::Instance for peripherals::$inst { fn regs() -> crate::pac::rng::Rng { crate::pac::$inst } } }; );