use core::marker::PhantomData; use embassy_hal_common::into_ref; use stm32_metapac::rcc::vals::{Mco1, Mco2, Mcopre}; use super::sealed::RccPeripheral; use crate::gpio::sealed::AFType; use crate::gpio::Speed; use crate::pac::rcc::vals::{Hpre, Ppre, Sw}; use crate::pac::{FLASH, PWR, RCC}; use crate::rcc::{set_freqs, Clocks}; use crate::time::Hertz; use crate::{peripherals, Peripheral}; /// HSI speed pub const HSI_FREQ: Hertz = Hertz(16_000_000); /// LSI speed pub const LSI_FREQ: Hertz = Hertz(32_000); /// Clocks configuration #[non_exhaustive] #[derive(Default)] pub struct Config { pub hse: Option, pub bypass_hse: bool, pub hclk: Option, pub sys_ck: Option, pub pclk1: Option, pub pclk2: Option, #[cfg(not(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423, stm32f446)))] pub plli2s: Option, pub pll48: bool, } #[cfg(stm32f410)] fn setup_i2s_pll(_vco_in: u32, _plli2s: Option) -> Option { None } // Not currently implemented, but will be in the future #[cfg(any(stm32f411, stm32f412, stm32f413, stm32f423, stm32f446))] fn setup_i2s_pll(_vco_in: u32, _plli2s: Option) -> Option { None } #[cfg(not(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423, stm32f446)))] fn setup_i2s_pll(vco_in: u32, plli2s: Option) -> Option { let min_div = 2; let max_div = 7; let target = match plli2s { Some(target) => target, None => return None, }; // We loop through the possible divider values to find the best configuration. Looping // through all possible "N" values would result in more iterations. let (n, outdiv, output, _error) = (min_div..=max_div) .filter_map(|outdiv| { let target_vco_out = match target.checked_mul(outdiv) { Some(x) => x, None => return None, }; let n = (target_vco_out + (vco_in >> 1)) / vco_in; let vco_out = vco_in * n; if !(100_000_000..=432_000_000).contains(&vco_out) { return None; } let output = vco_out / outdiv; let error = (output as i32 - target as i32).unsigned_abs(); Some((n, outdiv, output, error)) }) .min_by_key(|(_, _, _, error)| *error)?; RCC.plli2scfgr().modify(|w| { w.set_plli2sn(n as u16); w.set_plli2sr(outdiv as u8); }); Some(output) } fn setup_pll(pllsrcclk: u32, use_hse: bool, pllsysclk: Option, plli2s: Option, pll48clk: bool) -> PllResults { use crate::pac::rcc::vals::{Pllp, Pllsrc}; let sysclk = pllsysclk.unwrap_or(pllsrcclk); if pllsysclk.is_none() && !pll48clk { RCC.pllcfgr().modify(|w| w.set_pllsrc(Pllsrc(use_hse as u8))); return PllResults { use_pll: false, pllsysclk: None, pll48clk: None, plli2sclk: None, }; } // Input divisor from PLL source clock, must result to frequency in // the range from 1 to 2 MHz let pllm_min = (pllsrcclk + 1_999_999) / 2_000_000; let pllm_max = pllsrcclk / 1_000_000; // Sysclk output divisor must be one of 2, 4, 6 or 8 let sysclk_div = core::cmp::min(8, (432_000_000 / sysclk) & !1); let target_freq = if pll48clk { 48_000_000 } else { sysclk * sysclk_div }; // Find the lowest pllm value that minimize the difference between // target frequency and the real vco_out frequency. let pllm = unwrap!((pllm_min..=pllm_max).min_by_key(|pllm| { let vco_in = pllsrcclk / pllm; let plln = target_freq / vco_in; target_freq - vco_in * plln })); let vco_in = pllsrcclk / pllm; assert!((1_000_000..=2_000_000).contains(&vco_in)); // Main scaler, must result in >= 100MHz (>= 192MHz for F401) // and <= 432MHz, min 50, max 432 let plln = if pll48clk { // try the different valid pllq according to the valid // main scaller values, and take the best let pllq = unwrap!((4..=9).min_by_key(|pllq| { let plln = 48_000_000 * pllq / vco_in; let pll48_diff = 48_000_000 - vco_in * plln / pllq; let sysclk_diff = (sysclk as i32 - (vco_in * plln / sysclk_div) as i32).abs(); (pll48_diff, sysclk_diff) })); 48_000_000 * pllq / vco_in } else { sysclk * sysclk_div / vco_in }; let pllp = (sysclk_div / 2) - 1; let pllq = (vco_in * plln + 47_999_999) / 48_000_000; let real_pll48clk = vco_in * plln / pllq; RCC.pllcfgr().modify(|w| { w.set_pllm(pllm as u8); w.set_plln(plln as u16); w.set_pllp(Pllp(pllp as u8)); w.set_pllq(pllq as u8); w.set_pllsrc(Pllsrc(use_hse as u8)); }); let real_pllsysclk = vco_in * plln / sysclk_div; PllResults { use_pll: true, pllsysclk: Some(real_pllsysclk), pll48clk: if pll48clk { Some(real_pll48clk) } else { None }, plli2sclk: setup_i2s_pll(vco_in, plli2s), } } pub enum McoClock { DIV1, DIV2, DIV3, DIV4, DIV5, } impl McoClock { fn into_raw(&self) -> Mcopre { match self { McoClock::DIV1 => Mcopre::DIV1, McoClock::DIV2 => Mcopre::DIV2, McoClock::DIV3 => Mcopre::DIV3, McoClock::DIV4 => Mcopre::DIV4, McoClock::DIV5 => Mcopre::DIV5, } } } #[derive(Copy, Clone)] pub enum Mco1Source { Hsi, Lse, Hse, Pll, } impl Default for Mco1Source { fn default() -> Self { Self::Hsi } } pub trait McoSource { type Raw; fn into_raw(&self) -> Self::Raw; } impl McoSource for Mco1Source { type Raw = Mco1; fn into_raw(&self) -> Self::Raw { match self { Mco1Source::Hsi => Mco1::HSI, Mco1Source::Lse => Mco1::LSE, Mco1Source::Hse => Mco1::HSE, Mco1Source::Pll => Mco1::PLL, } } } #[derive(Copy, Clone)] pub enum Mco2Source { SysClk, Plli2s, Hse, Pll, } impl Default for Mco2Source { fn default() -> Self { Self::SysClk } } impl McoSource for Mco2Source { type Raw = Mco2; fn into_raw(&self) -> Self::Raw { match self { Mco2Source::SysClk => Mco2::SYSCLK, Mco2Source::Plli2s => Mco2::PLLI2S, Mco2Source::Hse => Mco2::HSE, Mco2Source::Pll => Mco2::PLL, } } } pub(crate) mod sealed { use stm32_metapac::rcc::vals::Mcopre; pub trait McoInstance { type Source; unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre); } } pub trait McoInstance: sealed::McoInstance + 'static {} pin_trait!(McoPin, McoInstance); impl sealed::McoInstance for peripherals::MCO1 { type Source = Mco1; unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) { RCC.cfgr().modify(|w| { w.set_mco1(source); w.set_mco1pre(prescaler); }); match source { Mco1::PLL => { RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} } Mco1::HSI => { RCC.cr().modify(|w| w.set_hsion(true)); while !RCC.cr().read().hsirdy() {} } _ => {} } } } impl McoInstance for peripherals::MCO1 {} impl sealed::McoInstance for peripherals::MCO2 { type Source = Mco2; unsafe fn apply_clock_settings(source: Self::Source, prescaler: Mcopre) { RCC.cfgr().modify(|w| { w.set_mco2(source); w.set_mco2pre(prescaler); }); match source { Mco2::PLL => { RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} } #[cfg(not(stm32f410))] Mco2::PLLI2S => { RCC.cr().modify(|w| w.set_plli2son(true)); while !RCC.cr().read().plli2srdy() {} } _ => {} } } } impl McoInstance for peripherals::MCO2 {} pub struct Mco<'d, T: McoInstance> { phantom: PhantomData<&'d mut T>, } impl<'d, T: McoInstance> Mco<'d, T> { pub fn new( _peri: impl Peripheral

+ 'd, pin: impl Peripheral

> + 'd, source: impl McoSource, prescaler: McoClock, ) -> Self { into_ref!(pin); critical_section::with(|_| unsafe { T::apply_clock_settings(source.into_raw(), prescaler.into_raw()); pin.set_as_af(pin.af_num(), AFType::OutputPushPull); pin.set_speed(Speed::VeryHigh); }); Self { phantom: PhantomData } } } fn flash_setup(sysclk: u32) { use crate::pac::flash::vals::Latency; // Be conservative with voltage ranges const FLASH_LATENCY_STEP: u32 = 30_000_000; critical_section::with(|_| { FLASH .acr() .modify(|w| w.set_latency(Latency(((sysclk - 1) / FLASH_LATENCY_STEP) as u8))); }); } pub(crate) unsafe fn init(config: Config) { crate::peripherals::PWR::enable(); let pllsrcclk = config.hse.map(|hse| hse.0).unwrap_or(HSI_FREQ.0); let sysclk = config.sys_ck.map(|sys| sys.0).unwrap_or(pllsrcclk); let sysclk_on_pll = sysclk != pllsrcclk; let plls = setup_pll( pllsrcclk, config.hse.is_some(), if sysclk_on_pll { Some(sysclk) } else { None }, #[cfg(not(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423, stm32f446)))] config.plli2s.map(|i2s| i2s.0), #[cfg(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423, stm32f446))] None, config.pll48, ); if config.pll48 { let freq = unwrap!(plls.pll48clk); assert!((max::PLL_48_CLK as i32 - freq as i32).abs() <= max::PLL_48_TOLERANCE as i32); } let sysclk = if sysclk_on_pll { unwrap!(plls.pllsysclk) } else { sysclk }; // AHB prescaler let hclk = config.hclk.map(|h| h.0).unwrap_or(sysclk); let (hpre_bits, hpre_div) = match (sysclk + hclk - 1) / hclk { 0 => unreachable!(), 1 => (Hpre::DIV1, 1), 2 => (Hpre::DIV2, 2), 3..=5 => (Hpre::DIV4, 4), 6..=11 => (Hpre::DIV8, 8), 12..=39 => (Hpre::DIV16, 16), 40..=95 => (Hpre::DIV64, 64), 96..=191 => (Hpre::DIV128, 128), 192..=383 => (Hpre::DIV256, 256), _ => (Hpre::DIV512, 512), }; // Calculate real AHB clock let hclk = sysclk / hpre_div; let pclk1 = config .pclk1 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(max::PCLK1_MAX, hclk)); let (ppre1_bits, ppre1) = match (hclk + pclk1 - 1) / pclk1 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul1 = if ppre1 == 1 { 1 } else { 2 }; // Calculate real APB1 clock let pclk1 = hclk / ppre1; assert!(pclk1 <= max::PCLK1_MAX); let pclk2 = config .pclk2 .map(|p| p.0) .unwrap_or_else(|| core::cmp::min(max::PCLK2_MAX, hclk)); let (ppre2_bits, ppre2) = match (hclk + pclk2 - 1) / pclk2 { 0 => unreachable!(), 1 => (0b000, 1), 2 => (0b100, 2), 3..=5 => (0b101, 4), 6..=11 => (0b110, 8), _ => (0b111, 16), }; let timer_mul2 = if ppre2 == 1 { 1 } else { 2 }; // Calculate real APB2 clock let pclk2 = hclk / ppre2; assert!(pclk2 <= max::PCLK2_MAX); flash_setup(sysclk); if config.hse.is_some() { RCC.cr().modify(|w| { w.set_hsebyp(config.bypass_hse); w.set_hseon(true); }); while !RCC.cr().read().hserdy() {} } if plls.use_pll { RCC.cr().modify(|w| w.set_pllon(true)); if hclk > max::HCLK_OVERDRIVE_FREQUENCY { PWR.cr1().modify(|w| w.set_oden(true)); while !PWR.csr1().read().odrdy() {} PWR.cr1().modify(|w| w.set_odswen(true)); while !PWR.csr1().read().odswrdy() {} } while !RCC.cr().read().pllrdy() {} } #[cfg(not(stm32f410))] if plls.plli2sclk.is_some() { RCC.cr().modify(|w| w.set_plli2son(true)); while !RCC.cr().read().plli2srdy() {} } RCC.cfgr().modify(|w| { w.set_ppre2(Ppre(ppre2_bits)); w.set_ppre1(Ppre(ppre1_bits)); w.set_hpre(hpre_bits); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); RCC.cfgr().modify(|w| { w.set_sw(if sysclk_on_pll { Sw::PLL } else if config.hse.is_some() { Sw::HSE } else { Sw::HSI }) }); set_freqs(Clocks { sys: Hertz(sysclk), apb1: Hertz(pclk1), apb2: Hertz(pclk2), apb1_tim: Hertz(pclk1 * timer_mul1), apb2_tim: Hertz(pclk2 * timer_mul2), ahb1: Hertz(hclk), ahb2: Hertz(hclk), ahb3: Hertz(hclk), pll48: plls.pll48clk.map(Hertz), #[cfg(not(stm32f410))] plli2s: plls.plli2sclk.map(Hertz), #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f446, stm32f469, stm32f479))] pllsai: None, }); } struct PllResults { use_pll: bool, pllsysclk: Option, pll48clk: Option, #[allow(dead_code)] plli2sclk: Option, } mod max { #[cfg(stm32f401)] pub(crate) const SYSCLK_MAX: u32 = 84_000_000; #[cfg(any(stm32f405, stm32f407, stm32f415, stm32f417,))] pub(crate) const SYSCLK_MAX: u32 = 168_000_000; #[cfg(any(stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,))] pub(crate) const SYSCLK_MAX: u32 = 100_000_000; #[cfg(any(stm32f427, stm32f429, stm32f437, stm32f439, stm32f446, stm32f469, stm32f479,))] pub(crate) const SYSCLK_MAX: u32 = 180_000_000; pub(crate) const HCLK_OVERDRIVE_FREQUENCY: u32 = 168_000_000; pub(crate) const PCLK1_MAX: u32 = PCLK2_MAX / 2; #[cfg(any(stm32f401, stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,))] pub(crate) const PCLK2_MAX: u32 = SYSCLK_MAX; #[cfg(not(any(stm32f401, stm32f410, stm32f411, stm32f412, stm32f413, stm32f423,)))] pub(crate) const PCLK2_MAX: u32 = SYSCLK_MAX / 2; pub(crate) const PLL_48_CLK: u32 = 48_000_000; pub(crate) const PLL_48_TOLERANCE: u32 = 120_000; }