// The v1c ethernet driver was ported to embassy from the awesome stm32-eth project (https://github.com/stm32-rs/stm32-eth). use core::marker::PhantomData; use core::sync::atomic::{fence, Ordering}; use core::task::Waker; use embassy_cortex_m::peripheral::{PeripheralMutex, PeripheralState, StateStorage}; use embassy_hal_common::{into_ref, PeripheralRef}; use embassy_net::{Device, DeviceCapabilities, LinkState, PacketBuf, MTU}; use embassy_sync::waitqueue::AtomicWaker; use crate::gpio::sealed::{AFType, Pin as __GpioPin}; use crate::gpio::{AnyPin, Speed}; #[cfg(eth_v1a)] use crate::pac::AFIO; #[cfg(any(eth_v1b, eth_v1c))] use crate::pac::SYSCFG; use crate::pac::{ETH, RCC}; use crate::Peripheral; mod descriptors; mod rx_desc; mod tx_desc; use descriptors::DescriptorRing; use stm32_metapac::eth::vals::{Apcs, Cr, Dm, DmaomrSr, Fes, Ftf, Ifg, MbProgress, Mw, Pbl, Rsf, St, Tsf}; use super::*; pub struct State<'d, T: Instance, const TX: usize, const RX: usize>(StateStorage>); impl<'d, T: Instance, const TX: usize, const RX: usize> State<'d, T, TX, RX> { pub const fn new() -> Self { Self(StateStorage::new()) } } pub struct Ethernet<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> { state: PeripheralMutex<'d, Inner<'d, T, TX, RX>>, pins: [PeripheralRef<'d, AnyPin>; 9], _phy: P, clock_range: Cr, phy_addr: u8, mac_addr: [u8; 6], } #[cfg(eth_v1a)] macro_rules! config_in_pins { ($($pin:ident),*) => { // NOTE(unsafe) Exclusive access to the registers critical_section::with(|_| { $( // TODO properly create a set_as_input function $pin.set_as_af($pin.af_num(), AFType::Input); )* }) } } #[cfg(eth_v1a)] macro_rules! config_af_pins { ($($pin:ident),*) => { // NOTE(unsafe) Exclusive access to the registers critical_section::with(|_| { $( // We are lucky here, this configures to max speed (50MHz) $pin.set_as_af($pin.af_num(), AFType::OutputPushPull); )* }) }; } #[cfg(any(eth_v1b, eth_v1c))] macro_rules! config_pins { ($($pin:ident),*) => { // NOTE(unsafe) Exclusive access to the registers critical_section::with(|_| { $( $pin.set_as_af($pin.af_num(), AFType::OutputPushPull); $pin.set_speed(Speed::VeryHigh); )* }) }; } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Ethernet<'d, T, P, TX, RX> { /// safety: the returned instance is not leak-safe pub unsafe fn new( state: &'d mut State<'d, T, TX, RX>, peri: impl Peripheral

+ 'd, interrupt: impl Peripheral

+ 'd, ref_clk: impl Peripheral

> + 'd, mdio: impl Peripheral

> + 'd, mdc: impl Peripheral

> + 'd, crs: impl Peripheral

> + 'd, rx_d0: impl Peripheral

> + 'd, rx_d1: impl Peripheral

> + 'd, tx_d0: impl Peripheral

> + 'd, tx_d1: impl Peripheral

> + 'd, tx_en: impl Peripheral

> + 'd, phy: P, mac_addr: [u8; 6], phy_addr: u8, ) -> Self { into_ref!(interrupt, ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); // Enable the necessary Clocks // NOTE(unsafe) We have exclusive access to the registers #[cfg(eth_v1a)] critical_section::with(|_| { RCC.apb2enr().modify(|w| w.set_afioen(true)); // Select RMII (Reduced Media Independent Interface) // Must be done prior to enabling peripheral clock AFIO.mapr().modify(|w| w.set_mii_rmii_sel(true)); RCC.ahbenr().modify(|w| { w.set_ethen(true); w.set_ethtxen(true); w.set_ethrxen(true); }); }); #[cfg(any(eth_v1b, eth_v1c))] critical_section::with(|_| { RCC.apb2enr().modify(|w| w.set_syscfgen(true)); RCC.ahb1enr().modify(|w| { w.set_ethen(true); w.set_ethtxen(true); w.set_ethrxen(true); }); // RMII (Reduced Media Independent Interface) SYSCFG.pmc().modify(|w| w.set_mii_rmii_sel(true)); }); #[cfg(eth_v1a)] { config_in_pins!(ref_clk, rx_d0, rx_d1); config_af_pins!(mdio, mdc, tx_d0, tx_d1, tx_en); } #[cfg(any(eth_v1b, eth_v1c))] config_pins!(ref_clk, mdio, mdc, crs, rx_d0, rx_d1, tx_d0, tx_d1, tx_en); // NOTE(unsafe) We are ourselves not leak-safe. let state = PeripheralMutex::new(interrupt, &mut state.0, || Inner::new(peri)); // NOTE(unsafe) We have exclusive access to the registers let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); // Reset and wait dma.dmabmr().modify(|w| w.set_sr(true)); while dma.dmabmr().read().sr() {} mac.maccr().modify(|w| { w.set_ifg(Ifg::IFG96); // inter frame gap 96 bit times w.set_apcs(Apcs::STRIP); // automatic padding and crc stripping w.set_fes(Fes::FES100); // fast ethernet speed w.set_dm(Dm::FULLDUPLEX); // full duplex // TODO: Carrier sense ? ECRSFD }); // Note: Writing to LR triggers synchronisation of both LR and HR into the MAC core, // so the LR write must happen after the HR write. mac.maca0hr() .modify(|w| w.set_maca0h(u16::from(mac_addr[4]) | (u16::from(mac_addr[5]) << 8))); mac.maca0lr().write(|w| { w.set_maca0l( u32::from(mac_addr[0]) | (u32::from(mac_addr[1]) << 8) | (u32::from(mac_addr[2]) << 16) | (u32::from(mac_addr[3]) << 24), ) }); // pause time mac.macfcr().modify(|w| w.set_pt(0x100)); // Transfer and Forward, Receive and Forward dma.dmaomr().modify(|w| { w.set_tsf(Tsf::STOREFORWARD); w.set_rsf(Rsf::STOREFORWARD); }); dma.dmabmr().modify(|w| { w.set_pbl(Pbl::PBL32) // programmable burst length - 32 ? }); // TODO MTU size setting not found for v1 ethernet, check if correct // NOTE(unsafe) We got the peripheral singleton, which means that `rcc::init` was called let hclk = crate::rcc::get_freqs().ahb1; let hclk_mhz = hclk.0 / 1_000_000; // Set the MDC clock frequency in the range 1MHz - 2.5MHz let clock_range = match hclk_mhz { 0..=24 => panic!("Invalid HCLK frequency - should be at least 25 MHz."), 25..=34 => Cr::CR_20_35, // Divide by 16 35..=59 => Cr::CR_35_60, // Divide by 26 60..=99 => Cr::CR_60_100, // Divide by 42 100..=149 => Cr::CR_100_150, // Divide by 62 150..=216 => Cr::CR_150_168, // Divide by 102 _ => { panic!("HCLK results in MDC clock > 2.5MHz even for the highest CSR clock divider") } }; let pins = [ ref_clk.map_into(), mdio.map_into(), mdc.map_into(), crs.map_into(), rx_d0.map_into(), rx_d1.map_into(), tx_d0.map_into(), tx_d1.map_into(), tx_en.map_into(), ]; let mut this = Self { state, pins, _phy: phy, clock_range, phy_addr, mac_addr, }; this.state.with(|s| { s.desc_ring.init(); fence(Ordering::SeqCst); let mac = ETH.ethernet_mac(); let dma = ETH.ethernet_dma(); mac.maccr().modify(|w| { w.set_re(true); w.set_te(true); }); dma.dmaomr().modify(|w| { w.set_ftf(Ftf::FLUSH); // flush transmit fifo (queue) w.set_st(St::STARTED); // start transmitting channel w.set_sr(DmaomrSr::STARTED); // start receiving channel }); // Enable interrupts dma.dmaier().modify(|w| { w.set_nise(true); w.set_rie(true); w.set_tie(true); }); }); P::phy_reset(&mut this); P::phy_init(&mut this); this } } unsafe impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> StationManagement for Ethernet<'d, T, P, TX, RX> { fn smi_read(&mut self, reg: u8) -> u16 { // NOTE(unsafe) These registers aren't used in the interrupt and we have `&mut self` unsafe { let mac = ETH.ethernet_mac(); mac.macmiiar().modify(|w| { w.set_pa(self.phy_addr); w.set_mr(reg); w.set_mw(Mw::READ); // read operation w.set_cr(self.clock_range); w.set_mb(MbProgress::BUSY); // indicate that operation is in progress }); while mac.macmiiar().read().mb() == MbProgress::BUSY {} mac.macmiidr().read().md() } } fn smi_write(&mut self, reg: u8, val: u16) { // NOTE(unsafe) These registers aren't used in the interrupt and we have `&mut self` unsafe { let mac = ETH.ethernet_mac(); mac.macmiidr().write(|w| w.set_md(val)); mac.macmiiar().modify(|w| { w.set_pa(self.phy_addr); w.set_mr(reg); w.set_mw(Mw::WRITE); // write w.set_cr(self.clock_range); w.set_mb(MbProgress::BUSY); }); while mac.macmiiar().read().mb() == MbProgress::BUSY {} } } } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Device for Ethernet<'d, T, P, TX, RX> { fn is_transmit_ready(&mut self) -> bool { self.state.with(|s| s.desc_ring.tx.available()) } fn transmit(&mut self, pkt: PacketBuf) { self.state.with(|s| unwrap!(s.desc_ring.tx.transmit(pkt))); } fn receive(&mut self) -> Option { self.state.with(|s| s.desc_ring.rx.pop_packet()) } fn register_waker(&mut self, waker: &Waker) { WAKER.register(waker); } fn capabilities(&self) -> DeviceCapabilities { let mut caps = DeviceCapabilities::default(); caps.max_transmission_unit = MTU; caps.max_burst_size = Some(TX.min(RX)); caps } fn link_state(&mut self) -> LinkState { if P::poll_link(self) { LinkState::Up } else { LinkState::Down } } fn ethernet_address(&self) -> [u8; 6] { self.mac_addr } } impl<'d, T: Instance, P: PHY, const TX: usize, const RX: usize> Drop for Ethernet<'d, T, P, TX, RX> { fn drop(&mut self) { // NOTE(unsafe) We have `&mut self` and the interrupt doesn't use this registers unsafe { let dma = ETH.ethernet_dma(); let mac = ETH.ethernet_mac(); // Disable the TX DMA and wait for any previous transmissions to be completed dma.dmaomr().modify(|w| w.set_st(St::STOPPED)); // Disable MAC transmitter and receiver mac.maccr().modify(|w| { w.set_re(false); w.set_te(false); }); dma.dmaomr().modify(|w| w.set_sr(DmaomrSr::STOPPED)); } // NOTE(unsafe) Exclusive access to the regs critical_section::with(|_| unsafe { for pin in self.pins.iter_mut() { pin.set_as_disconnected(); } }) } } //---------------------------------------------------------------------- struct Inner<'d, T: Instance, const TX: usize, const RX: usize> { _peri: PhantomData<&'d mut T>, desc_ring: DescriptorRing, } impl<'d, T: Instance, const TX: usize, const RX: usize> Inner<'d, T, TX, RX> { pub fn new(_peri: impl Peripheral

+ 'd) -> Self { Self { _peri: PhantomData, desc_ring: DescriptorRing::new(), } } } impl<'d, T: Instance, const TX: usize, const RX: usize> PeripheralState for Inner<'d, T, TX, RX> { type Interrupt = crate::interrupt::ETH; fn on_interrupt(&mut self) { unwrap!(self.desc_ring.tx.on_interrupt()); self.desc_ring.rx.on_interrupt(); WAKER.wake(); // TODO: Check and clear more flags unsafe { let dma = ETH.ethernet_dma(); dma.dmasr().modify(|w| { w.set_ts(true); w.set_rs(true); w.set_nis(true); }); // Delay two peripheral's clock dma.dmasr().read(); dma.dmasr().read(); } } } static WAKER: AtomicWaker = AtomicWaker::new();