#![no_std] #![no_main] #![feature(type_alias_impl_trait)] use core::f32::consts::PI; use defmt::{error, info}; use embassy_executor::Spawner; use embassy_nrf::i2s::{self, Channels, Config, DoubleBuffering, MasterClock, Sample as _, SampleWidth, I2S}; use embassy_nrf::{bind_interrupts, peripherals}; use {defmt_rtt as _, panic_probe as _}; type Sample = i16; const NUM_SAMPLES: usize = 50; bind_interrupts!(struct Irqs { I2S => i2s::InterruptHandler; }); #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_nrf::init(Default::default()); let master_clock: MasterClock = i2s::ExactSampleRate::_50000.into(); let sample_rate = master_clock.sample_rate(); info!("Sample rate: {}", sample_rate); let mut config = Config::default(); config.sample_width = SampleWidth::_16bit; config.channels = Channels::MonoLeft; let buffers = DoubleBuffering::::new(); let mut output_stream = I2S::new_master(p.I2S, Irqs, p.P0_25, p.P0_26, p.P0_27, master_clock, config).output(p.P0_28, buffers); let mut waveform = Waveform::new(1.0 / sample_rate as f32); waveform.process(output_stream.buffer()); output_stream.start().await.expect("I2S Start"); loop { waveform.process(output_stream.buffer()); if let Err(err) = output_stream.send().await { error!("{}", err); } } } struct Waveform { inv_sample_rate: f32, carrier: SineOsc, freq_mod: SineOsc, amp_mod: SineOsc, } impl Waveform { fn new(inv_sample_rate: f32) -> Self { let mut carrier = SineOsc::new(); carrier.set_frequency(110.0, inv_sample_rate); let mut freq_mod = SineOsc::new(); freq_mod.set_frequency(1.0, inv_sample_rate); freq_mod.set_amplitude(1.0); let mut amp_mod = SineOsc::new(); amp_mod.set_frequency(16.0, inv_sample_rate); amp_mod.set_amplitude(0.5); Self { inv_sample_rate, carrier, freq_mod, amp_mod, } } fn process(&mut self, buf: &mut [Sample]) { for sample in buf.chunks_mut(1) { let freq_modulation = bipolar_to_unipolar(self.freq_mod.generate()); self.carrier .set_frequency(110.0 + 440.0 * freq_modulation, self.inv_sample_rate); let amp_modulation = bipolar_to_unipolar(self.amp_mod.generate()); self.carrier.set_amplitude(amp_modulation); let signal = self.carrier.generate(); sample[0] = (Sample::SCALE as f32 * signal) as Sample; } } } struct SineOsc { amplitude: f32, modulo: f32, phase_inc: f32, } impl SineOsc { const B: f32 = 4.0 / PI; const C: f32 = -4.0 / (PI * PI); const P: f32 = 0.225; pub fn new() -> Self { Self { amplitude: 1.0, modulo: 0.0, phase_inc: 0.0, } } pub fn set_frequency(&mut self, freq: f32, inv_sample_rate: f32) { self.phase_inc = freq * inv_sample_rate; } pub fn set_amplitude(&mut self, amplitude: f32) { self.amplitude = amplitude; } pub fn generate(&mut self) -> f32 { let signal = self.parabolic_sin(self.modulo); self.modulo += self.phase_inc; if self.modulo < 0.0 { self.modulo += 1.0; } else if self.modulo > 1.0 { self.modulo -= 1.0; } signal * self.amplitude } fn parabolic_sin(&mut self, modulo: f32) -> f32 { let angle = PI - modulo * 2.0 * PI; let y = Self::B * angle + Self::C * angle * abs(angle); Self::P * (y * abs(y) - y) + y } } #[inline] fn abs(value: f32) -> f32 { if value < 0.0 { -value } else { value } } #[inline] fn bipolar_to_unipolar(value: f32) -> f32 { (value + 1.0) / 2.0 }