use core::cell::Cell; use core::ops::Deref; use core::sync::atomic::{AtomicU32, Ordering}; use embassy::time::Clock; use crate::interrupt; use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt}; use crate::pac::rtc0; // RTC timekeeping works with something we call "periods", which are time intervals // of 2^23 ticks. The RTC counter value is 24 bits, so one "overflow cycle" is 2 periods. // // A `period` count is maintained in parallel to the RTC hardware `counter`, like this: // - `period` and `counter` start at 0 // - `period` is incremented on overflow (at counter value 0) // - `period` is incremented "midway" between overflows (at counter value 0x800000) // // Therefore, when `period` is even, counter is in 0..0x7fffff. When odd, counter is in 0x800000..0xFFFFFF // This allows for now() to return the correct value even if it races an overflow. // // To get `now()`, `period` is read first, then `counter` is read. If the counter value matches // the expected range for the `period` parity, we're done. If it doesn't, this means that // a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value // corresponds to the next period. // // `period` is a 32bit integer, so It overflows on 2^32 * 2^23 / 32768 seconds of uptime, which is 34865 years. fn calc_now(period: u32, counter: u32) -> u64 { ((period as u64) << 23) + ((counter ^ ((period & 1) << 23)) as u64) } fn compare_n(n: usize) -> u32 { 1 << (n + 16) } #[cfg(tests)] mod test { use super::*; #[test] fn test_calc_now() { assert_eq!(calc_now(0, 0x000000), 0x0_000000); assert_eq!(calc_now(0, 0x000001), 0x0_000001); assert_eq!(calc_now(0, 0x7FFFFF), 0x0_7FFFFF); assert_eq!(calc_now(1, 0x7FFFFF), 0x1_7FFFFF); assert_eq!(calc_now(0, 0x800000), 0x0_800000); assert_eq!(calc_now(1, 0x800000), 0x0_800000); assert_eq!(calc_now(1, 0x800001), 0x0_800001); assert_eq!(calc_now(1, 0xFFFFFF), 0x0_FFFFFF); assert_eq!(calc_now(2, 0xFFFFFF), 0x1_FFFFFF); assert_eq!(calc_now(1, 0x000000), 0x1_000000); assert_eq!(calc_now(2, 0x000000), 0x1_000000); } } struct AlarmState { timestamp: Cell, callback: Cell>, } impl AlarmState { fn new() -> Self { Self { timestamp: Cell::new(u64::MAX), callback: Cell::new(None), } } } const ALARM_COUNT: usize = 3; pub struct RTC { rtc: T, irq: T::Interrupt, /// Number of 2^23 periods elapsed since boot. period: AtomicU32, /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled. alarms: Mutex<[AlarmState; ALARM_COUNT]>, } unsafe impl Send for RTC {} unsafe impl Sync for RTC {} impl RTC { pub fn new(rtc: T, irq: T::Interrupt) -> Self { Self { rtc, irq, period: AtomicU32::new(0), alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]), } } pub fn start(&'static self) { self.rtc.cc[3].write(|w| unsafe { w.bits(0x800000) }); self.rtc.intenset.write(|w| { let w = w.ovrflw().set(); let w = w.compare3().set(); w }); self.rtc.tasks_clear.write(|w| unsafe { w.bits(1) }); self.rtc.tasks_start.write(|w| unsafe { w.bits(1) }); // Wait for clear while self.rtc.counter.read().bits() != 0 {} self.irq.set_handler( |ptr| unsafe { let this = &*(ptr as *const () as *const Self); this.on_interrupt(); }, self as *const _ as *mut _, ); self.irq.unpend(); self.irq.enable(); } fn on_interrupt(&self) { if self.rtc.events_ovrflw.read().bits() == 1 { self.rtc.events_ovrflw.write(|w| w); self.next_period(); } if self.rtc.events_compare[3].read().bits() == 1 { self.rtc.events_compare[3].write(|w| w); self.next_period(); } for n in 0..ALARM_COUNT { if self.rtc.events_compare[n].read().bits() == 1 { self.rtc.events_compare[n].write(|w| w); interrupt::free(|cs| { self.trigger_alarm(n, cs); }) } } } fn next_period(&self) { interrupt::free(|cs| { let period = self.period.fetch_add(1, Ordering::Relaxed) + 1; let t = (period as u64) << 23; for n in 0..ALARM_COUNT { let alarm = &self.alarms.borrow(cs)[n]; let at = alarm.timestamp.get(); let diff = at - t; if diff < 0xc00000 { self.rtc.cc[n].write(|w| unsafe { w.bits(at as u32 & 0xFFFFFF) }); self.rtc.intenset.write(|w| unsafe { w.bits(compare_n(n)) }); } } }) } fn trigger_alarm(&self, n: usize, cs: &CriticalSection) { self.rtc.intenclr.write(|w| unsafe { w.bits(compare_n(n)) }); let alarm = &self.alarms.borrow(cs)[n]; alarm.timestamp.set(u64::MAX); // Call after clearing alarm, so the callback can set another alarm. if let Some((f, ctx)) = alarm.callback.get() { f(ctx); } } fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) { interrupt::free(|cs| { let alarm = &self.alarms.borrow(cs)[n]; alarm.callback.set(Some((callback, ctx))); }) } fn set_alarm(&self, n: usize, timestamp: u64) { interrupt::free(|cs| { let alarm = &self.alarms.borrow(cs)[n]; alarm.timestamp.set(timestamp); let t = self.now(); // If alarm timestamp has passed, trigger it instantly. if timestamp <= t { self.trigger_alarm(n, cs); return; } // If it hasn't triggered yet, setup it in the compare channel. let diff = timestamp - t; if diff < 0xc00000 { // nrf52 docs say: // If the COUNTER is N, writing N or N+1 to a CC register may not trigger a COMPARE event. // To workaround this, we never write a timestamp smaller than N+3. // N+2 is not safe because rtc can tick from N to N+1 between calling now() and writing cc. // // It is impossible for rtc to tick more than once because // - this code takes less time than 1 tick // - it runs with interrupts disabled so nothing else can preempt it. // // This means that an alarm can be delayed for up to 2 ticks (from t+1 to t+3), but this is allowed // by the Alarm trait contract. What's not allowed is triggering alarms *before* their scheduled time, // and we don't do that here. let safe_timestamp = timestamp.max(t + 3); self.rtc.cc[n].write(|w| unsafe { w.bits(safe_timestamp as u32 & 0xFFFFFF) }); self.rtc.intenset.write(|w| unsafe { w.bits(compare_n(n)) }); } else { // If it's too far in the future, don't setup the compare channel yet. // It will be setup later by `next_period`. self.rtc.intenclr.write(|w| unsafe { w.bits(compare_n(n)) }); } }) } pub fn alarm0(&'static self) -> Alarm { Alarm { n: 0, rtc: self } } pub fn alarm1(&'static self) -> Alarm { Alarm { n: 1, rtc: self } } pub fn alarm2(&'static self) -> Alarm { Alarm { n: 2, rtc: self } } } impl embassy::time::Clock for RTC { fn now(&self) -> u64 { // `period` MUST be read before `counter`, see comment at the top for details. let period = self.period.load(Ordering::Relaxed); let counter = self.rtc.counter.read().bits(); calc_now(period, counter) } } pub struct Alarm { n: usize, rtc: &'static RTC, } impl embassy::time::Alarm for Alarm { fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) { self.rtc.set_alarm_callback(self.n, callback, ctx); } fn set(&self, timestamp: u64) { self.rtc.set_alarm(self.n, timestamp); } fn clear(&self) { self.rtc.set_alarm(self.n, u64::MAX); } } mod sealed { pub trait Instance {} impl Instance for crate::pac::RTC0 {} impl Instance for crate::pac::RTC1 {} #[cfg(any(feature = "52832", feature = "52833", feature = "52840"))] impl Instance for crate::pac::RTC2 {} } /// Implemented by all RTC instances. pub trait Instance: sealed::Instance + Deref + Sized + 'static { /// The interrupt associated with this RTC instance. type Interrupt: OwnedInterrupt; } impl Instance for crate::pac::RTC0 { type Interrupt = interrupt::RTC0Interrupt; } impl Instance for crate::pac::RTC1 { type Interrupt = interrupt::RTC1Interrupt; } #[cfg(any(feature = "52832", feature = "52833", feature = "52840"))] impl Instance for crate::pac::RTC2 { type Interrupt = interrupt::RTC2Interrupt; }