use core::cell::Cell; use core::convert::TryInto; use core::sync::atomic::{compiler_fence, AtomicU32, Ordering}; use embassy::time::{Clock, TICKS_PER_SECOND}; use stm32f4xx_hal::bb; use stm32f4xx_hal::rcc::Clocks; use crate::interrupt; use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt}; // RTC timekeeping works with something we call "periods", which are time intervals // of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods. // // A `period` count is maintained in parallel to the RTC hardware `counter`, like this: // - `period` and `counter` start at 0 // - `period` is incremented on overflow (at counter value 0) // - `period` is incremented "midway" between overflows (at counter value 0x8000) // // Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF // This allows for now() to return the correct value even if it races an overflow. // // To get `now()`, `period` is read first, then `counter` is read. If the counter value matches // the expected range for the `period` parity, we're done. If it doesn't, this means that // a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value // corresponds to the next period. // // `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years. fn calc_now(period: u32, counter: u16) -> u64 { ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64) } struct AlarmState { timestamp: Cell, callback: Cell>, } impl AlarmState { fn new() -> Self { Self { timestamp: Cell::new(u64::MAX), callback: Cell::new(None), } } } // TODO: This is sometimes wasteful, try to find a better way const ALARM_COUNT: usize = 3; pub struct RTC { rtc: T, irq: T::Interrupt, /// Number of 2^23 periods elapsed since boot. period: AtomicU32, /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled. alarms: Mutex<[AlarmState; ALARM_COUNT]>, clocks: Clocks, } impl RTC { pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self { Self { rtc, irq, period: AtomicU32::new(0), alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]), clocks, } } pub fn start(&'static self) { self.rtc.enable_clock(); self.rtc.stop_and_reset(); let multiplier = if T::ppre(&self.clocks) == 1 { 1 } else { 2 }; let freq = T::pclk(&self.clocks) * multiplier; let psc = freq / TICKS_PER_SECOND as u32 - 1; let psc: u16 = psc.try_into().unwrap(); self.rtc.set_psc_arr(psc, u16::MAX); // Mid-way point self.rtc.set_compare(0, 0x8000); self.rtc.set_compare_interrupt(0, true); self.irq.set_handler( |ptr| unsafe { let this = &*(ptr as *const () as *const Self); this.on_interrupt(); }, self as *const _ as *mut _, ); self.irq.unpend(); self.irq.enable(); self.rtc.start(); } fn on_interrupt(&self) { if self.rtc.overflow_interrupt_status() { self.rtc.overflow_clear_flag(); self.next_period(); } // Half overflow if self.rtc.compare_interrupt_status(0) { self.rtc.compare_clear_flag(0); self.next_period(); } for n in 1..=ALARM_COUNT { if self.rtc.compare_interrupt_status(n) { self.rtc.compare_clear_flag(n); interrupt::free(|cs| self.trigger_alarm(n, cs)); } } } fn next_period(&self) { interrupt::free(|cs| { let period = self.period.fetch_add(1, Ordering::Relaxed) + 1; let t = (period as u64) << 15; for n in 1..=ALARM_COUNT { let alarm = &self.alarms.borrow(cs)[n - 1]; let at = alarm.timestamp.get(); let diff = at - t; if diff < 0xc000 { self.rtc.set_compare(n, at as u16); self.rtc.set_compare_interrupt(n, true); } } }) } fn trigger_alarm(&self, n: usize, cs: &CriticalSection) { self.rtc.set_compare_interrupt(n, false); let alarm = &self.alarms.borrow(cs)[n - 1]; alarm.timestamp.set(u64::MAX); // Call after clearing alarm, so the callback can set another alarm. if let Some((f, ctx)) = alarm.callback.get() { f(ctx); } } fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) { interrupt::free(|cs| { let alarm = &self.alarms.borrow(cs)[n - 1]; alarm.callback.set(Some((callback, ctx))); }) } fn set_alarm(&self, n: usize, timestamp: u64) { interrupt::free(|cs| { let alarm = &self.alarms.borrow(cs)[n - 1]; alarm.timestamp.set(timestamp); let t = self.now(); if timestamp <= t { self.trigger_alarm(n, cs); return; } let diff = timestamp - t; if diff < 0xc000 { let safe_timestamp = timestamp.max(t + 3); self.rtc.set_compare(n, safe_timestamp as u16); self.rtc.set_compare_interrupt(n, true); } else { self.rtc.set_compare_interrupt(n, false); } }) } pub fn alarm1(&'static self) -> Alarm { Alarm { n: 1, rtc: self } } pub fn alarm2(&'static self) -> Option> { if T::REAL_ALARM_COUNT >= 2 { Some(Alarm { n: 2, rtc: self }) } else { None } } pub fn alarm3(&'static self) -> Option> { if T::REAL_ALARM_COUNT >= 3 { Some(Alarm { n: 3, rtc: self }) } else { None } } } impl embassy::time::Clock for RTC { fn now(&self) -> u64 { let period = self.period.load(Ordering::Relaxed); compiler_fence(Ordering::Acquire); let counter = self.rtc.counter(); calc_now(period, counter) } } pub struct Alarm { n: usize, rtc: &'static RTC, } impl embassy::time::Alarm for Alarm { fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) { self.rtc.set_alarm_callback(self.n, callback, ctx); } fn set(&self, timestamp: u64) { self.rtc.set_alarm(self.n, timestamp); } fn clear(&self) { self.rtc.set_alarm(self.n, u64::MAX); } } mod sealed { pub trait Sealed {} } pub trait Instance: sealed::Sealed + Sized + 'static { type Interrupt: OwnedInterrupt; const REAL_ALARM_COUNT: usize; fn enable_clock(&self); fn set_compare(&self, n: usize, value: u16); fn set_compare_interrupt(&self, n: usize, enable: bool); fn compare_interrupt_status(&self, n: usize) -> bool; fn compare_clear_flag(&self, n: usize); fn overflow_interrupt_status(&self) -> bool; fn overflow_clear_flag(&self); fn set_psc_arr(&self, psc: u16, arr: u16); fn stop_and_reset(&self); fn start(&self); fn counter(&self) -> u16; fn ppre(clocks: &Clocks) -> u8; fn pclk(clocks: &Clocks) -> u32; } mod tim2 { use super::*; use stm32f4xx_hal::pac::{RCC, TIM2}; impl sealed::Sealed for TIM2 {} impl Instance for TIM2 { type Interrupt = interrupt::TIM2Interrupt; const REAL_ALARM_COUNT: usize = 3; fn enable_clock(&self) { // NOTE(unsafe) It will only be used for atomic operations unsafe { let rcc = &*RCC::ptr(); bb::set(&rcc.apb1enr, 0); bb::set(&rcc.apb1rstr, 0); bb::clear(&rcc.apb1rstr, 0); } } fn set_compare(&self, n: usize, value: u16) { // NOTE(unsafe) these registers accept all the range of u16 values match n { 0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }), 1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }), 2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }), 3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }), _ => {} } } fn set_compare_interrupt(&self, n: usize, enable: bool) { if n > 3 { return; } let bit = n as u8 + 1; unsafe { if enable { bb::set(&self.dier, bit); } else { bb::clear(&self.dier, bit); } } } fn compare_interrupt_status(&self, n: usize) -> bool { let status = self.sr.read(); match n { 0 => status.cc1if().bit_is_set(), 1 => status.cc2if().bit_is_set(), 2 => status.cc3if().bit_is_set(), 3 => status.cc4if().bit_is_set(), _ => false, } } fn compare_clear_flag(&self, n: usize) { if n > 3 { return; } let bit = n as u8 + 1; unsafe { bb::clear(&self.sr, bit); } } fn overflow_interrupt_status(&self) -> bool { self.sr.read().uif().bit_is_set() } fn overflow_clear_flag(&self) { unsafe { bb::clear(&self.sr, 0); } } fn set_psc_arr(&self, psc: u16, arr: u16) { // NOTE(unsafe) All u16 values are valid self.psc.write(|w| unsafe { w.bits(psc.into()) }); self.arr.write(|w| unsafe { w.bits(arr.into()) }); unsafe { // Set URS, generate update, clear URS bb::set(&self.cr1, 2); self.egr.write(|w| w.ug().set_bit()); bb::clear(&self.cr1, 2); } } fn stop_and_reset(&self) { unsafe { bb::clear(&self.cr1, 0); } self.cnt.reset(); } fn start(&self) { unsafe { bb::set(&self.cr1, 0) } } fn counter(&self) -> u16 { self.cnt.read().bits() as u16 } fn ppre(clocks: &Clocks) -> u8 { clocks.ppre1() } fn pclk(clocks: &Clocks) -> u32 { clocks.pclk1().0 } } }