//! Asynchronous shared SPI bus //! //! # Example (nrf52) //! //! ```rust //! use embassy_embedded_hal::shared_bus::spi::SpiDevice; //! use embassy_sync::mutex::Mutex; //! use embassy_sync::blocking_mutex::raw::ThreadModeRawMutex; //! //! static SPI_BUS: StaticCell>> = StaticCell::new(); //! let mut config = spim::Config::default(); //! config.frequency = spim::Frequency::M32; //! let irq = interrupt::take!(SPIM3); //! let spi = spim::Spim::new_txonly(p.SPI3, irq, p.P0_15, p.P0_18, config); //! let spi_bus = Mutex::::new(spi); //! let spi_bus = SPI_BUS.init(spi_bus); //! //! // Device 1, using embedded-hal-async compatible driver for ST7735 LCD display //! let cs_pin1 = Output::new(p.P0_24, Level::Low, OutputDrive::Standard); //! let spi_dev1 = SpiDevice::new(spi_bus, cs_pin1); //! let display1 = ST7735::new(spi_dev1, dc1, rst1, Default::default(), 160, 128); //! //! // Device 2 //! let cs_pin2 = Output::new(p.P0_24, Level::Low, OutputDrive::Standard); //! let spi_dev2 = SpiDevice::new(spi_bus, cs_pin2); //! let display2 = ST7735::new(spi_dev2, dc2, rst2, Default::default(), 160, 128); //! ``` use embassy_sync::blocking_mutex::raw::RawMutex; use embassy_sync::mutex::Mutex; use embedded_hal_1::digital::OutputPin; use embedded_hal_1::spi::Operation; use embedded_hal_async::spi; use crate::shared_bus::SpiDeviceError; use crate::SetConfig; /// SPI device on a shared bus. pub struct SpiDevice<'a, M: RawMutex, BUS, CS> { bus: &'a Mutex, cs: CS, } impl<'a, M: RawMutex, BUS, CS> SpiDevice<'a, M, BUS, CS> { /// Create a new `SpiDevice`. pub fn new(bus: &'a Mutex, cs: CS) -> Self { Self { bus, cs } } } impl<'a, M: RawMutex, BUS, CS> spi::ErrorType for SpiDevice<'a, M, BUS, CS> where BUS: spi::ErrorType, CS: OutputPin, { type Error = SpiDeviceError; } impl spi::SpiDevice for SpiDevice<'_, M, BUS, CS> where M: RawMutex, BUS: spi::SpiBus, CS: OutputPin, { async fn transaction(&mut self, operations: &mut [spi::Operation<'_, u8>]) -> Result<(), Self::Error> { let mut bus = self.bus.lock().await; self.cs.set_low().map_err(SpiDeviceError::Cs)?; let op_res: Result<(), BUS::Error> = try { for op in operations { match op { Operation::Read(buf) => bus.read(buf).await?, Operation::Write(buf) => bus.write(buf).await?, Operation::Transfer(read, write) => bus.transfer(read, write).await?, Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?, #[cfg(not(feature = "time"))] Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported), #[cfg(feature = "time")] Operation::DelayUs(us) => { embassy_time::Timer::after(embassy_time::Duration::from_micros(*us as _)).await } } } }; // On failure, it's important to still flush and deassert CS. let flush_res = bus.flush().await; let cs_res = self.cs.set_high(); let op_res = op_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?; cs_res.map_err(SpiDeviceError::Cs)?; Ok(op_res) } } /// SPI device on a shared bus, with its own configuration. /// /// This is like [`SpiDevice`], with an additional bus configuration that's applied /// to the bus before each use using [`SetConfig`]. This allows different /// devices on the same bus to use different communication settings. pub struct SpiDeviceWithConfig<'a, M: RawMutex, BUS: SetConfig, CS> { bus: &'a Mutex, cs: CS, config: BUS::Config, } impl<'a, M: RawMutex, BUS: SetConfig, CS> SpiDeviceWithConfig<'a, M, BUS, CS> { /// Create a new `SpiDeviceWithConfig`. pub fn new(bus: &'a Mutex, cs: CS, config: BUS::Config) -> Self { Self { bus, cs, config } } } impl<'a, M, BUS, CS> spi::ErrorType for SpiDeviceWithConfig<'a, M, BUS, CS> where BUS: spi::ErrorType + SetConfig, CS: OutputPin, M: RawMutex, { type Error = SpiDeviceError; } impl spi::SpiDevice for SpiDeviceWithConfig<'_, M, BUS, CS> where M: RawMutex, BUS: spi::SpiBus + SetConfig, CS: OutputPin, { async fn transaction(&mut self, operations: &mut [spi::Operation<'_, u8>]) -> Result<(), Self::Error> { let mut bus = self.bus.lock().await; bus.set_config(&self.config); self.cs.set_low().map_err(SpiDeviceError::Cs)?; let op_res: Result<(), BUS::Error> = try { for op in operations { match op { Operation::Read(buf) => bus.read(buf).await?, Operation::Write(buf) => bus.write(buf).await?, Operation::Transfer(read, write) => bus.transfer(read, write).await?, Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?, #[cfg(not(feature = "time"))] Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported), #[cfg(feature = "time")] Operation::DelayUs(us) => { embassy_time::Timer::after(embassy_time::Duration::from_micros(*us as _)).await } } } }; // On failure, it's important to still flush and deassert CS. let flush_res = bus.flush().await; let cs_res = self.cs.set_high(); let op_res = op_res.map_err(SpiDeviceError::Spi)?; flush_res.map_err(SpiDeviceError::Spi)?; cs_res.map_err(SpiDeviceError::Cs)?; Ok(op_res) } }