mod traits; use core::marker::PhantomData; use embassy_hal_internal::{into_ref, PeripheralRef}; #[allow(unused_imports)] use crate::gpio::sealed::{AFType, Pin}; use crate::gpio::AnyPin; use crate::hrtim::traits::Instance; use crate::time::Hertz; use crate::Peripheral; pub enum Source { Master, ChA, ChB, ChC, ChD, ChE, } pub struct BurstController { phantom: PhantomData, } pub struct Master { phantom: PhantomData, } pub struct ChA { phantom: PhantomData, } pub struct ChB { phantom: PhantomData, } pub struct ChC { phantom: PhantomData, } pub struct ChD { phantom: PhantomData, } pub struct ChE { phantom: PhantomData, } mod sealed { use super::Instance; pub trait AdvancedChannel { fn raw() -> usize; } } pub trait AdvancedChannel: sealed::AdvancedChannel {} pub struct PwmPin<'d, Perip, Channel> { _pin: PeripheralRef<'d, AnyPin>, phantom: PhantomData<(Perip, Channel)>, } pub struct ComplementaryPwmPin<'d, Perip, Channel> { _pin: PeripheralRef<'d, AnyPin>, phantom: PhantomData<(Perip, Channel)>, } macro_rules! advanced_channel_impl { ($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident, $complementary_pin_trait:ident) => { impl<'d, Perip: Instance> PwmPin<'d, Perip, $channel> { pub fn $new_chx(pin: impl Peripheral

> + 'd) -> Self { into_ref!(pin); critical_section::with(|_| { pin.set_low(); pin.set_as_af(pin.af_num(), AFType::OutputPushPull); #[cfg(gpio_v2)] pin.set_speed(crate::gpio::Speed::VeryHigh); }); PwmPin { _pin: pin.map_into(), phantom: PhantomData, } } } impl<'d, Perip: Instance> ComplementaryPwmPin<'d, Perip, $channel> { pub fn $new_chx(pin: impl Peripheral

> + 'd) -> Self { into_ref!(pin); critical_section::with(|_| { pin.set_low(); pin.set_as_af(pin.af_num(), AFType::OutputPushPull); #[cfg(gpio_v2)] pin.set_speed(crate::gpio::Speed::VeryHigh); }); ComplementaryPwmPin { _pin: pin.map_into(), phantom: PhantomData, } } } impl sealed::AdvancedChannel for $channel { fn raw() -> usize { $ch_num } } impl AdvancedChannel for $channel {} }; } advanced_channel_impl!(new_cha, ChA, 0, ChannelAPin, ChannelAComplementaryPin); advanced_channel_impl!(new_chb, ChB, 1, ChannelBPin, ChannelBComplementaryPin); advanced_channel_impl!(new_chc, ChC, 2, ChannelCPin, ChannelCComplementaryPin); advanced_channel_impl!(new_chd, ChD, 3, ChannelDPin, ChannelDComplementaryPin); advanced_channel_impl!(new_che, ChE, 4, ChannelEPin, ChannelEComplementaryPin); /// Struct used to divide a high resolution timer into multiple channels pub struct AdvancedPwm<'d, T: Instance> { _inner: PeripheralRef<'d, T>, pub master: Master, pub burst_controller: BurstController, pub ch_a: ChA, pub ch_b: ChB, pub ch_c: ChC, pub ch_d: ChD, pub ch_e: ChE, } impl<'d, T: Instance> AdvancedPwm<'d, T> { pub fn new( tim: impl Peripheral

+ 'd, _cha: Option>>, _chan: Option>>, _chb: Option>>, _chbn: Option>>, _chc: Option>>, _chcn: Option>>, _chd: Option>>, _chdn: Option>>, _che: Option>>, _chen: Option>>, ) -> Self { Self::new_inner(tim) } fn new_inner(tim: impl Peripheral

+ 'd) -> Self { into_ref!(tim); T::enable(); ::reset(); // // Enable and and stabilize the DLL // T::regs().dllcr().modify(|w| { // // w.set_calen(true); // // w.set_calrte(11); // w.set_cal(true); // }); // // debug!("wait for dll calibration"); // while !T::regs().isr().read().dllrdy() {} // // debug!("dll calibration complete"); Self { _inner: tim, master: Master { phantom: PhantomData }, burst_controller: BurstController { phantom: PhantomData }, ch_a: ChA { phantom: PhantomData }, ch_b: ChB { phantom: PhantomData }, ch_c: ChC { phantom: PhantomData }, ch_d: ChD { phantom: PhantomData }, ch_e: ChE { phantom: PhantomData }, } } } impl BurstController { pub fn set_source(&mut self, _source: Source) { todo!("burst mode control registers not implemented") } } /// Represents a fixed-frequency bridge converter /// /// Our implementation of the bridge converter uses a single channel and three compare registers, /// allowing implementation of a synchronous buck or boost converter in continuous or discontinuous /// conduction mode. /// /// It is important to remember that in synchronous topologies, energy can flow in reverse during /// light loading conditions, and that the low-side switch must be active for a short time to drive /// a bootstrapped high-side switch. pub struct BridgeConverter> { timer: PhantomData, channel: PhantomData, dead_time: u16, primary_duty: u16, min_secondary_duty: u16, max_secondary_duty: u16, } impl> BridgeConverter { pub fn new(_channel: C, frequency: Hertz) -> Self { use crate::pac::hrtim::vals::{Activeeffect, Inactiveeffect}; T::set_channel_frequency(C::raw(), frequency); // Always enable preload T::regs().tim(C::raw()).cr().modify(|w| { w.set_preen(true); w.set_repu(true); w.set_cont(true); }); // Enable timer outputs T::regs().oenr().modify(|w| { w.set_t1oen(C::raw(), true); w.set_t2oen(C::raw(), true); }); // The dead-time generation unit cannot be used because it forces the other output // to be completely complementary to the first output, which restricts certain waveforms // Therefore, software-implemented dead time must be used when setting the duty cycles // Set output 1 to active on a period event T::regs() .tim(C::raw()) .setr(0) .modify(|w| w.set_per(Activeeffect::SETACTIVE)); // Set output 1 to inactive on a compare 1 event T::regs() .tim(C::raw()) .rstr(0) .modify(|w| w.set_cmp(0, Inactiveeffect::SETINACTIVE)); // Set output 2 to active on a compare 2 event T::regs() .tim(C::raw()) .setr(1) .modify(|w| w.set_cmp(1, Activeeffect::SETACTIVE)); // Set output 2 to inactive on a compare 3 event T::regs() .tim(C::raw()) .rstr(1) .modify(|w| w.set_cmp(2, Inactiveeffect::SETINACTIVE)); Self { timer: PhantomData, channel: PhantomData, dead_time: 0, primary_duty: 0, min_secondary_duty: 0, max_secondary_duty: 0, } } pub fn start(&mut self) { T::regs().mcr().modify(|w| w.set_tcen(C::raw(), true)); } pub fn stop(&mut self) { T::regs().mcr().modify(|w| w.set_tcen(C::raw(), false)); } pub fn enable_burst_mode(&mut self) { T::regs().tim(C::raw()).outr().modify(|w| { // Enable Burst Mode w.set_idlem(0, true); w.set_idlem(1, true); // Set output to active during the burst w.set_idles(0, true); w.set_idles(1, true); }) } pub fn disable_burst_mode(&mut self) { T::regs().tim(C::raw()).outr().modify(|w| { // Disable Burst Mode w.set_idlem(0, false); w.set_idlem(1, false); }) } fn update_primary_duty_or_dead_time(&mut self) { self.min_secondary_duty = self.primary_duty + self.dead_time; T::regs().tim(C::raw()).cmp(0).modify(|w| w.set_cmp(self.primary_duty)); T::regs() .tim(C::raw()) .cmp(1) .modify(|w| w.set_cmp(self.min_secondary_duty)); } /// Set the dead time as a proportion of the maximum compare value pub fn set_dead_time(&mut self, dead_time: u16) { self.dead_time = dead_time; self.max_secondary_duty = self.get_max_compare_value() - dead_time; self.update_primary_duty_or_dead_time(); } /// Get the maximum compare value of a duty cycle pub fn get_max_compare_value(&mut self) -> u16 { T::regs().tim(C::raw()).per().read().per() } /// The primary duty is the period in which the primary switch is active /// /// In the case of a buck converter, this is the high-side switch /// In the case of a boost converter, this is the low-side switch pub fn set_primary_duty(&mut self, primary_duty: u16) { self.primary_duty = primary_duty; self.update_primary_duty_or_dead_time(); } /// The secondary duty is the period in any switch is active /// /// If less than or equal to the primary duty, the secondary switch will be active for one tick /// If a fully complementary output is desired, the secondary duty can be set to the max compare pub fn set_secondary_duty(&mut self, secondary_duty: u16) { let secondary_duty = if secondary_duty > self.max_secondary_duty { self.max_secondary_duty } else if secondary_duty <= self.min_secondary_duty { self.min_secondary_duty + 1 } else { secondary_duty }; T::regs().tim(C::raw()).cmp(2).modify(|w| w.set_cmp(secondary_duty)); } } /// Represents a variable-frequency resonant converter /// /// This implementation of a resonsant converter is appropriate for a half or full bridge, /// but does not include secondary rectification, which is appropriate for applications /// with a low-voltage on the secondary side. pub struct ResonantConverter> { timer: PhantomData, channel: PhantomData, min_period: u16, max_period: u16, } impl> ResonantConverter { pub fn new(_channel: C, min_frequency: Hertz, max_frequency: Hertz) -> Self { T::set_channel_frequency(C::raw(), min_frequency); // Always enable preload T::regs().tim(C::raw()).cr().modify(|w| { w.set_preen(true); w.set_repu(true); w.set_cont(true); w.set_half(true); }); // Enable timer outputs T::regs().oenr().modify(|w| { w.set_t1oen(C::raw(), true); w.set_t2oen(C::raw(), true); }); // Dead-time generator can be used in this case because the primary fets // of a resonant converter are always complementary T::regs().tim(C::raw()).outr().modify(|w| w.set_dten(true)); let max_period = T::regs().tim(C::raw()).per().read().per(); let min_period = max_period * (min_frequency.0 / max_frequency.0) as u16; Self { timer: PhantomData, channel: PhantomData, min_period: min_period, max_period: max_period, } } /// Set the dead time as a proportion of the maximum compare value pub fn set_dead_time(&mut self, value: u16) { T::set_channel_dead_time(C::raw(), value); } pub fn set_period(&mut self, period: u16) { assert!(period < self.max_period); assert!(period > self.min_period); T::regs().tim(C::raw()).per().modify(|w| w.set_per(period)); } /// Get the minimum compare value of a duty cycle pub fn get_min_period(&mut self) -> u16 { self.min_period } /// Get the maximum compare value of a duty cycle pub fn get_max_period(&mut self) -> u16 { self.max_period } } pin_trait!(ChannelAPin, Instance); pin_trait!(ChannelAComplementaryPin, Instance); pin_trait!(ChannelBPin, Instance); pin_trait!(ChannelBComplementaryPin, Instance); pin_trait!(ChannelCPin, Instance); pin_trait!(ChannelCComplementaryPin, Instance); pin_trait!(ChannelDPin, Instance); pin_trait!(ChannelDComplementaryPin, Instance); pin_trait!(ChannelEPin, Instance); pin_trait!(ChannelEComplementaryPin, Instance);